{"title":"基于优化光谱指数的机器学习提高滴灌马铃薯植株氮素评估性能","authors":"Haibo Yang, Fei Li, Yuncai Hu, Kang Yu","doi":"10.1007/s11119-025-10248-y","DOIUrl":null,"url":null,"abstract":"<p>Timely and accurate monitoring of plant nitrogen concentration (PNC) is vital for optimizing field N management. Hyperspectral indices are commonly used as a predictor for monitoring the PNC of crops, but individual spectral indices are often susceptible to cultivars and growth stages. Machine learning (ML) is a promising method for mining more spectral variables to assess the PNC of crops. To monitor the PNC of potatoes, therefore, this study extended previous work to further use hyperspectral optimized spectral indices (OSI) as input variables of ML, while, comparing with the ML models that used full-spectrum (FS), existing spectral indices (ESI) and sensitive spectral bands (SSB) as input variables, as well as simple regression model based on OSI alone. The partial least squares regression (PLSR), random forest (RF), support vector regression (SVR), and artificial neural network (ANN) models were calibrated using a dataset encompassing three cultivars and critical fertigation growth stages under three to six N levels. The calibrated ML models were evaluated using the datasets from independent experiments and two farmers´ fields. The OSI as an input variable in ML models showed superiority for predicting the potato PNC compared to FS, SSB, and ESI. The OSI-based RF model with an R<sup>2</sup> of 0.79, RMSE of 0.27%, and RPD of 2.18 had higher accuracy for predicting potato PNC than other ML models. Comparing the simple optimized spectral indices regression model alone, the OSI-based RF model reduced RMSE by mitigating the effects of cultivars and growth stages on PNC prediction. The OSI-based RF model significantly contributes to optimum fertilization management based on actual potato N status during critical growth periods.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"54 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the performance of plant nitrogen assessment in drip-irrigated potatoes using optimized spectral indices-based machine learning\",\"authors\":\"Haibo Yang, Fei Li, Yuncai Hu, Kang Yu\",\"doi\":\"10.1007/s11119-025-10248-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Timely and accurate monitoring of plant nitrogen concentration (PNC) is vital for optimizing field N management. Hyperspectral indices are commonly used as a predictor for monitoring the PNC of crops, but individual spectral indices are often susceptible to cultivars and growth stages. Machine learning (ML) is a promising method for mining more spectral variables to assess the PNC of crops. To monitor the PNC of potatoes, therefore, this study extended previous work to further use hyperspectral optimized spectral indices (OSI) as input variables of ML, while, comparing with the ML models that used full-spectrum (FS), existing spectral indices (ESI) and sensitive spectral bands (SSB) as input variables, as well as simple regression model based on OSI alone. The partial least squares regression (PLSR), random forest (RF), support vector regression (SVR), and artificial neural network (ANN) models were calibrated using a dataset encompassing three cultivars and critical fertigation growth stages under three to six N levels. The calibrated ML models were evaluated using the datasets from independent experiments and two farmers´ fields. The OSI as an input variable in ML models showed superiority for predicting the potato PNC compared to FS, SSB, and ESI. The OSI-based RF model with an R<sup>2</sup> of 0.79, RMSE of 0.27%, and RPD of 2.18 had higher accuracy for predicting potato PNC than other ML models. Comparing the simple optimized spectral indices regression model alone, the OSI-based RF model reduced RMSE by mitigating the effects of cultivars and growth stages on PNC prediction. The OSI-based RF model significantly contributes to optimum fertilization management based on actual potato N status during critical growth periods.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-025-10248-y\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10248-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving the performance of plant nitrogen assessment in drip-irrigated potatoes using optimized spectral indices-based machine learning
Timely and accurate monitoring of plant nitrogen concentration (PNC) is vital for optimizing field N management. Hyperspectral indices are commonly used as a predictor for monitoring the PNC of crops, but individual spectral indices are often susceptible to cultivars and growth stages. Machine learning (ML) is a promising method for mining more spectral variables to assess the PNC of crops. To monitor the PNC of potatoes, therefore, this study extended previous work to further use hyperspectral optimized spectral indices (OSI) as input variables of ML, while, comparing with the ML models that used full-spectrum (FS), existing spectral indices (ESI) and sensitive spectral bands (SSB) as input variables, as well as simple regression model based on OSI alone. The partial least squares regression (PLSR), random forest (RF), support vector regression (SVR), and artificial neural network (ANN) models were calibrated using a dataset encompassing three cultivars and critical fertigation growth stages under three to six N levels. The calibrated ML models were evaluated using the datasets from independent experiments and two farmers´ fields. The OSI as an input variable in ML models showed superiority for predicting the potato PNC compared to FS, SSB, and ESI. The OSI-based RF model with an R2 of 0.79, RMSE of 0.27%, and RPD of 2.18 had higher accuracy for predicting potato PNC than other ML models. Comparing the simple optimized spectral indices regression model alone, the OSI-based RF model reduced RMSE by mitigating the effects of cultivars and growth stages on PNC prediction. The OSI-based RF model significantly contributes to optimum fertilization management based on actual potato N status during critical growth periods.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.