Monitoring the interannual dynamic changes of soil organic matter using long-term Landsat images

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Chang Liu, Qian Sun, Chi Zhang, Wentao Chen, Xuzhou Qu, Boyi Tang, Kai Ma, Xiaohe Gu
{"title":"Monitoring the interannual dynamic changes of soil organic matter using long-term Landsat images","authors":"Chang Liu, Qian Sun, Chi Zhang, Wentao Chen, Xuzhou Qu, Boyi Tang, Kai Ma, Xiaohe Gu","doi":"10.1007/s11119-025-10245-1","DOIUrl":null,"url":null,"abstract":"<p>Current approaches for monitoring soil organic matter (SOM) exhibit limitations in long-term predictive accuracy and data efficiency. This study aims to develop a remote sensing framework that integrating Landsat imagery and three modeling algorithms (PLSR, RF, Cubist) to address these challenges, reduce sampling workload, and enable large scale soil fertility assessments. Feature selection via Boruta and recursive feature elimination (RFE) was applied to optimize model performance, with PLSR identified astheoptimal algorithm. The framework utilized long-term Landsat imagery (2007–2021) and an inter-annual migration learning approach to map SOM dynamics. PLSR achieved cross-year SOM prediction (R<sup>2</sup> = 0.51, RMSE = 3.97 g/kg), enabling accurate mapping of non-sample years with minimal field data and long-term imagery. Analysis of SOM trends revealed a decade-long decline in the study area, strongly correlated with land-use intensity. The proposed inter-annual migration learning method demonstrates that SOM dynamics can be efficiently tracked using sparse sampling and time-series remote sensing, offering a scalable tool for soil fertility management and precision agriculture.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"30 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10245-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Current approaches for monitoring soil organic matter (SOM) exhibit limitations in long-term predictive accuracy and data efficiency. This study aims to develop a remote sensing framework that integrating Landsat imagery and three modeling algorithms (PLSR, RF, Cubist) to address these challenges, reduce sampling workload, and enable large scale soil fertility assessments. Feature selection via Boruta and recursive feature elimination (RFE) was applied to optimize model performance, with PLSR identified astheoptimal algorithm. The framework utilized long-term Landsat imagery (2007–2021) and an inter-annual migration learning approach to map SOM dynamics. PLSR achieved cross-year SOM prediction (R2 = 0.51, RMSE = 3.97 g/kg), enabling accurate mapping of non-sample years with minimal field data and long-term imagery. Analysis of SOM trends revealed a decade-long decline in the study area, strongly correlated with land-use intensity. The proposed inter-annual migration learning method demonstrates that SOM dynamics can be efficiently tracked using sparse sampling and time-series remote sensing, offering a scalable tool for soil fertility management and precision agriculture.

利用Landsat长期影像监测土壤有机质的年际动态变化
目前监测土壤有机质(SOM)的方法在长期预测准确性和数据效率方面存在局限性。本研究旨在开发一个整合陆地卫星图像和三种建模算法(PLSR、RF、Cubist)的遥感框架,以解决这些挑战,减少采样工作量,并实现大规模土壤肥力评估。通过Boruta特征选择和递归特征消除(RFE)来优化模型性能,并将PLSR算法确定为最优算法。该框架利用长期Landsat图像(2007-2021)和年际迁移学习方法来绘制SOM动态。PLSR实现了跨年SOM预测(R2 = 0.51, RMSE = 3.97 g/kg),可以用最少的野外数据和长期图像准确绘制非样本年份。对SOM趋势的分析显示,研究区域在过去十年中呈下降趋势,这与土地利用强度密切相关。提出的年际迁移学习方法表明,利用稀疏采样和时序遥感可以有效地跟踪土壤有机质动态,为土壤肥力管理和精准农业提供了可扩展的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信