{"title":"Navigation line detection algorithm for corn spraying robot based on improved LT-YOLOv10s","authors":"Zhihua Diao, Shushuai Ma, Jiangbo Li, Jingcheng Zhang, Xingyi Li, Suna Zhao, Yan He, Baohua Zhang, Liying Jiang","doi":"10.1007/s11119-025-10243-3","DOIUrl":null,"url":null,"abstract":"<p>The deep integration of artificial intelligence technology and agriculture has significantly propelled the rapid development of smart agriculture. However, the field still faces numerous challenges, including high algorithm complexity and limited detection speed in farmland environments. To address the challenges encountered by corn spraying robots in navigating and identifying lines, we have proposed a corn crop row navigation line recognition algorithm based on the LT-YOLOv10s model. By introducing lightweight network models (GhosNet), efficient feature pyramid models (SPPFA), and efficient feature attention modules (PSCA) into the YOLOv10s network, we have reduced the complexity of the model and significantly enhanced the detection efficiency of corn plants. Then, the algorithm precisely locates corn plants using the center points of detection boxes and accurately fits crop rows using the least squares method. Finally, the navigation lines centered on the corn crop rows are determined through the adjacent centerline method. Experimental data significantly demonstrates that the comprehensive performance of the LT-YOLOv10s model surpasses industry benchmark models such as YOLOv5s, YOLOv7, YOLOv8s, YOLOv9s, and the traditional YOLOv10s. The proposed algorithm for extracting the center navigation line of corn crop rows boasts an average fitting time of just 26ms with an accuracy rate of up to 93.8%, ensuring precision and reliability in navigation line extraction. This provides robust technical support for precise navigation of corn-spraying robots.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"32 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10243-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The deep integration of artificial intelligence technology and agriculture has significantly propelled the rapid development of smart agriculture. However, the field still faces numerous challenges, including high algorithm complexity and limited detection speed in farmland environments. To address the challenges encountered by corn spraying robots in navigating and identifying lines, we have proposed a corn crop row navigation line recognition algorithm based on the LT-YOLOv10s model. By introducing lightweight network models (GhosNet), efficient feature pyramid models (SPPFA), and efficient feature attention modules (PSCA) into the YOLOv10s network, we have reduced the complexity of the model and significantly enhanced the detection efficiency of corn plants. Then, the algorithm precisely locates corn plants using the center points of detection boxes and accurately fits crop rows using the least squares method. Finally, the navigation lines centered on the corn crop rows are determined through the adjacent centerline method. Experimental data significantly demonstrates that the comprehensive performance of the LT-YOLOv10s model surpasses industry benchmark models such as YOLOv5s, YOLOv7, YOLOv8s, YOLOv9s, and the traditional YOLOv10s. The proposed algorithm for extracting the center navigation line of corn crop rows boasts an average fitting time of just 26ms with an accuracy rate of up to 93.8%, ensuring precision and reliability in navigation line extraction. This provides robust technical support for precise navigation of corn-spraying robots.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.