通过有效生成合成数据,加强行基作物的视觉自主导航

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Mauro Martini, Marco Ambrosio, Alessandro Navone, Brenno Tuberga, Marcello Chiaberge
{"title":"通过有效生成合成数据,加强行基作物的视觉自主导航","authors":"Mauro Martini, Marco Ambrosio, Alessandro Navone, Brenno Tuberga, Marcello Chiaberge","doi":"10.1007/s11119-024-10157-6","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Service robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments and deep visual perception are spreading as successful tools to speed up the development of robust navigation with low-cost RGB-D cameras.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>In this context, the contribution of this work resides in a complete framework to fully exploit synthetic data for a robust visual control of mobile robots. A wide realistic multi-crops dataset is accurately generated to train deep semantic segmentation networks and enabling robust performance in challenging real-world conditions. An automatic parametric approach enables an easy customization of virtual field geometry and features for a fast reliable evaluation of navigation algorithms.</p><h3 data-test=\"abstract-sub-heading\">Results and conclusion</h3><p>The high quality of the generated synthetic dataset is demonstrated by an extensive experimentation with real crops images and benchmarking the resulting robot navigation both in virtual and real fields with relevant metrics.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"71 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing visual autonomous navigation in row-based crops with effective synthetic data generation\",\"authors\":\"Mauro Martini, Marco Ambrosio, Alessandro Navone, Brenno Tuberga, Marcello Chiaberge\",\"doi\":\"10.1007/s11119-024-10157-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Introduction</h3><p>Service robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments and deep visual perception are spreading as successful tools to speed up the development of robust navigation with low-cost RGB-D cameras.</p><h3 data-test=\\\"abstract-sub-heading\\\">Materials and methods</h3><p>In this context, the contribution of this work resides in a complete framework to fully exploit synthetic data for a robust visual control of mobile robots. A wide realistic multi-crops dataset is accurately generated to train deep semantic segmentation networks and enabling robust performance in challenging real-world conditions. An automatic parametric approach enables an easy customization of virtual field geometry and features for a fast reliable evaluation of navigation algorithms.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results and conclusion</h3><p>The high quality of the generated synthetic dataset is demonstrated by an extensive experimentation with real crops images and benchmarking the resulting robot navigation both in virtual and real fields with relevant metrics.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-024-10157-6\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10157-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

导言:近年来,服务机器人技术正在加强精准农业,使许多基于高效自主导航解决方案的自动化流程成为可能。然而,数据生成和现场验证活动阻碍了大规模自主平台的发展。模拟环境和深度视觉感知被认为是利用低成本 RGB-D 摄像头加速稳健导航开发的成功工具。 在此背景下,这项工作的贡献在于建立了一个完整的框架,充分利用合成数据实现移动机器人的稳健视觉控制。我们准确生成了一个广泛的现实多作物数据集,用于训练深度语义分割网络,使其在具有挑战性的现实世界条件下也能发挥强大的性能。自动参数化方法可轻松定制虚拟田地的几何形状和特征,从而对导航算法进行快速可靠的评估。结果和结论通过对真实农作物图像进行广泛实验,并利用相关指标对虚拟和真实田地中的机器人导航结果进行基准测试,证明了生成的合成数据集质量很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing visual autonomous navigation in row-based crops with effective synthetic data generation

Enhancing visual autonomous navigation in row-based crops with effective synthetic data generation

Introduction

Service robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments and deep visual perception are spreading as successful tools to speed up the development of robust navigation with low-cost RGB-D cameras.

Materials and methods

In this context, the contribution of this work resides in a complete framework to fully exploit synthetic data for a robust visual control of mobile robots. A wide realistic multi-crops dataset is accurately generated to train deep semantic segmentation networks and enabling robust performance in challenging real-world conditions. An automatic parametric approach enables an easy customization of virtual field geometry and features for a fast reliable evaluation of navigation algorithms.

Results and conclusion

The high quality of the generated synthetic dataset is demonstrated by an extensive experimentation with real crops images and benchmarking the resulting robot navigation both in virtual and real fields with relevant metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信