Unmanned aerial system plant protection products spraying performance evaluation on a vineyard

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Alberto Sassu, Vasilis Psiroukis, Francesco Bettucci, Luca Ghiani, Spyros Fountas, Filippo Gambella
{"title":"Unmanned aerial system plant protection products spraying performance evaluation on a vineyard","authors":"Alberto Sassu, Vasilis Psiroukis, Francesco Bettucci, Luca Ghiani, Spyros Fountas, Filippo Gambella","doi":"10.1007/s11119-024-10155-8","DOIUrl":null,"url":null,"abstract":"<p>In the context of increasing global food demand and the urgent need for production processes optimization, plant protection products play a key role in safeguarding crops from insects, pests, and fungi, responsible of plant diseases proliferation and yield losses. Despite the inaccurate distribution of conventional aerial spraying performed by airplanes and helicopters, Unmanned Aerial Spraying Systems (UASSs) offer low health risks and operational cost solutions, preserving crops and soil from physical damage. This study explores the impact of UASS flight height (2 m and 2.5 m above ground level), speed (1 m s<sup>−1</sup> and 1.5 m s<sup>−1</sup>), and position (over the canopy and the inter-row) on vineyard aerial spraying efficiency by analysing Water Sensitive Papers droplet coverage, density, and Number Median Diameter using a MATLAB script. Flight position factor, more than others, influenced the application results. The specific configuration of 2 m altitude, 1.5 m s<sup>−1</sup> cruising speed, and inter-row positioning yielded the best results in terms of canopy coverage, minimizing off-target and ground dispersion, and represented the best setting to facilitate droplets penetration, reaching the lowest parts generally more affected from disease. Further research is needed to assess UASS aerial PPP distribution effectiveness and environmental impact in agriculture, crucial for technology implementation, especially in countries where aerial treatments are not yet permitted.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"70 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10155-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of increasing global food demand and the urgent need for production processes optimization, plant protection products play a key role in safeguarding crops from insects, pests, and fungi, responsible of plant diseases proliferation and yield losses. Despite the inaccurate distribution of conventional aerial spraying performed by airplanes and helicopters, Unmanned Aerial Spraying Systems (UASSs) offer low health risks and operational cost solutions, preserving crops and soil from physical damage. This study explores the impact of UASS flight height (2 m and 2.5 m above ground level), speed (1 m s−1 and 1.5 m s−1), and position (over the canopy and the inter-row) on vineyard aerial spraying efficiency by analysing Water Sensitive Papers droplet coverage, density, and Number Median Diameter using a MATLAB script. Flight position factor, more than others, influenced the application results. The specific configuration of 2 m altitude, 1.5 m s−1 cruising speed, and inter-row positioning yielded the best results in terms of canopy coverage, minimizing off-target and ground dispersion, and represented the best setting to facilitate droplets penetration, reaching the lowest parts generally more affected from disease. Further research is needed to assess UASS aerial PPP distribution effectiveness and environmental impact in agriculture, crucial for technology implementation, especially in countries where aerial treatments are not yet permitted.

Abstract Image

无人机系统植保产品在葡萄园中的喷洒性能评估
在全球粮食需求不断增长和迫切需要优化生产流程的背景下,植保产品在保护农作物免受昆虫、害虫和真菌侵害方面发挥着关键作用,而昆虫、害虫和真菌是植物病害扩散和产量损失的罪魁祸首。尽管传统的飞机和直升机空中喷洒分布不准确,但无人机空中喷洒系统(UASS)提供了低健康风险和低运营成本的解决方案,保护作物和土壤免受物理损害。本研究通过使用 MATLAB 脚本分析水敏论文的液滴覆盖率、密度和中值直径数,探讨了无人机喷洒系统的飞行高度(离地面 2 米和 2.5 米)、速度(1 米/秒-1 和 1.5 米/秒-1)和位置(树冠上方和行间)对葡萄园空中喷洒效率的影响。与其他因素相比,飞行位置因素对喷洒结果的影响更大。2 米的飞行高度、1.5 米/秒的巡航速度和行间定位的特定配置在树冠覆盖率方面产生了最佳结果,最大程度地减少了脱靶和地面扩散,是促进液滴穿透的最佳设置,可到达通常受病害影响较大的最低部位。需要进一步开展研究,以评估 UASS 空中喷洒农药的效果和对农业环境的影响,这对技术的实施至关重要,尤其是在尚不允许空中喷洒农药的国家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信