Phytopathology最新文献

筛选
英文 中文
Noninvasive, Presymptomatic Detection of Potato Cyst Nematode Infection in Tomato Using Chlorophyll Fluorescence Analysis. 利用叶绿素荧光分析对番茄马铃薯胞囊线虫感染进行无创、症状前检测。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2025-01-01 Epub Date: 2025-01-09 DOI: 10.1094/PHYTO-07-24-0206-R
Robbert van Himbeeck, Eline Laura Binnebösz, Deisy Amora, Michele Gottardi, Jaap-Jan Willig, Stefan Geisen, Johannes Helder
{"title":"Noninvasive, Presymptomatic Detection of Potato Cyst Nematode Infection in Tomato Using Chlorophyll Fluorescence Analysis.","authors":"Robbert van Himbeeck, Eline Laura Binnebösz, Deisy Amora, Michele Gottardi, Jaap-Jan Willig, Stefan Geisen, Johannes Helder","doi":"10.1094/PHYTO-07-24-0206-R","DOIUrl":"10.1094/PHYTO-07-24-0206-R","url":null,"abstract":"<p><p>Potato cyst nematodes (PCNs) are notorious pathogens in all major potato production areas worldwide. Mainly due to the low mobility of this soil pathogen, PCN infestations are mostly observed as patches (\"foci\") that only cover a fraction of the acreage. In-field presymptomatic localization of these pathogens is valuable, as it would allow for the localized application of control measures. Although the mapping of foci is technically feasible, it is unpractical, as it would require the analysis of numerous soil samples. We investigated whether chlorophyll fluorescence (Chl-F) could be suitable as a rapid, nondestructive method for early PCN detection. To this end, the impact of four <i>Globodera pallida</i> densities on the Chl-F of tomato was investigated in a phenotyping greenhouse for 26 days. Furthermore, the classical plant performance indicators of biomass and root surface area were compared with Chl-F. Thermal dissipation (NPQ) and an estimate of the photosynthetic rate (Φ<sub>PSII</sub>) responded at 1 day postinoculation, and Φ<sub>PSII</sub> was most sensitive to low PCN infection levels. Chl-F parameters responded more readily to PCN infection than biomass and root surface area. The maximum quantum yield of photosystem II (F<sub>v</sub>/F<sub>m</sub>) and the potential activity of photosystem II (F<sub>v</sub>/F<sub>0</sub>) initially increased at low PCN infection levels, whereas a sharp decrease was observed at higher infestation levels. Hence, our data suggest that low PCN levels promoted plant performance before becoming detrimental at higher levels. Although Chl-F allowed for early and sensitive PCN detection, it remains to be investigated whether these signals can be distinguished from those produced by other belowground stressors in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"77-84"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Genetic Diversity and Limited Regional Population Differentiation in Populations of Calonectria pseudoreteaudii from Eucalyptus Plantations. 桉树种植园中 Calonectria pseudoreteaudii 种群的遗传多样性较高,区域种群分化有限。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2025-01-01 Epub Date: 2025-01-17 DOI: 10.1094/PHYTO-05-24-0154-R
WenWen Li, FeiFei Liu, ShuaiFei Chen, Michael J Wingfield, Tuan A Duong
{"title":"High Genetic Diversity and Limited Regional Population Differentiation in Populations of <i>Calonectria pseudoreteaudii</i> from <i>Eucalyptus</i> Plantations.","authors":"WenWen Li, FeiFei Liu, ShuaiFei Chen, Michael J Wingfield, Tuan A Duong","doi":"10.1094/PHYTO-05-24-0154-R","DOIUrl":"10.1094/PHYTO-05-24-0154-R","url":null,"abstract":"<p><p><i>Calonectria pseudoreteaudii</i> causes a serious and widespread disease known as Calonectria leaf blight in <i>Eucalyptus</i> plantations of southern China. Little is known regarding the population biology or reproductive biology of this pathogen in the affected areas. The aims of this study were to investigate the genetic diversity, population structure, and reproductive mode of <i>C</i>. <i>pseudoreteaudii</i> from affected <i>Eucalyptus</i> plantations of southern China. Ten polymorphic simple sequence repeat markers were developed for the species and were used to genotype 311 isolates from eight populations. The mating types of all isolates were identified using the <i>MAT</i> gene primers. The results revealed a high level of genetic diversity of the pathogen in all investigated populations. Of the 90 multilocus genotypes detected, 10 were shared between at least two populations. With the exception of one population from HuiZhou, GuangDong (7HZ), the most dominant genotype was shared in the seven remaining populations. Discriminant analysis of principal components and population differentiation analyses showed that the 7HZ population was well differentiated from the others and that there was no significant differentiation between the remaining populations. Analysis of molecular variance suggested that most molecular variation was within populations (86%). Index of association analysis was consistent with a predominantly asexual life cycle for <i>C</i>. <i>pseudoreteaudii</i> in the studied regions. Although both mating types were detected in seven of the eight populations, the <i>MAT1-1</i>/<i>MAT1-2</i> ratios in these populations deviated significantly from the 1:1 ratio expected in a randomly mating population.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"97-105"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New, Complete Circularized Genomes of Xanthomonas citri pv. mangiferaeindicae Produced from Short- and Long-Read Co-Assembly Shed Light on Strains that Emerged a Decade Ago on Mango and Cashew in Burkina Faso. 新的、完整的柠檬黄单胞菌(Xanthomonas citri pv. mangiferaeindicae)环化基因组是通过短读码和长读码联合组装产生的,它揭示了十年前在布基纳法索芒果和腰果上出现的菌株。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2025-01-01 Epub Date: 2025-01-17 DOI: 10.1094/PHYTO-08-24-0267-SC
Claudine Boyer, Pierre Lefeuvre, Cyrille Zombre, Adrien Rieux, Issa Wonni, Lionel Gagnevin, Olivier Pruvost
{"title":"New, Complete Circularized Genomes of <i>Xanthomonas citri</i> pv. <i>mangiferaeindicae</i> Produced from Short- and Long-Read Co-Assembly Shed Light on Strains that Emerged a Decade Ago on Mango and Cashew in Burkina Faso.","authors":"Claudine Boyer, Pierre Lefeuvre, Cyrille Zombre, Adrien Rieux, Issa Wonni, Lionel Gagnevin, Olivier Pruvost","doi":"10.1094/PHYTO-08-24-0267-SC","DOIUrl":"10.1094/PHYTO-08-24-0267-SC","url":null,"abstract":"<p><p>We report high-quality genomes of three strains of <i>Xanthomonas citri</i> pv<i>. mangiferaeindicae</i>, the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb. Genome mining revealed the presence of several secretion systems and effectors involved in the virulence of xanthomonads with (i) a type I secretion system of the hlyDB group; (ii) <i>xps</i> and <i>xcs</i> type II secretion systems; (iii) a type III secretion system with several type III effectors, including transcription activator-like effectors; (iv) several type IV secretion systems associated with plasmid or integrative conjugative elements mobility; (v) three type V secretion system subclasses (Va, Vb, and Vc); and (vi) a single i3* type VI secretion system. The two strains isolated in Burkina Faso from mango (<i>Mangifera indica</i>) and cashew (<i>Anacardium occidentale</i>) differed by only 14 single-nucleotide polymorphisms and shared identical secretion systems and type III effector repertoires. Several transcription activator-like effectors were identified in each strain, some of which may target plant genes previously found implicated in disease development in other xanthomonad-associated pathosystems. These results support the emergence in Burkina Faso a decade ago of very closely related strains that became epidemic on mango and cashew (i.e., two distinct host genera of a same plant family). These new genomic resources will contribute to better understanding the biology and evolution of this agriculturally major crop pathogen.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"14-19"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered Pine Endophytic Fungus Expressing dsRNA Targeting Lethal Genes to Control the Plant Parasitic Nematode Bursaphelenchus xylophilus. 表达dsRNA靶向致死基因的工程松木内生真菌控制植物寄生线虫
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-12-24 DOI: 10.1094/PHYTO-07-24-0203-R
Wei Zhang, Ruijiong Wang, Yongxia Li, Dongzhen Li, Xuan Wang, Xiaojian Wen, Yuqian Feng, Zhenkai Liu, Shuai Ma, Xingyao Zhang
{"title":"Engineered Pine Endophytic Fungus Expressing dsRNA Targeting Lethal Genes to Control the Plant Parasitic Nematode <i>Bursaphelenchus xylophilus</i>.","authors":"Wei Zhang, Ruijiong Wang, Yongxia Li, Dongzhen Li, Xuan Wang, Xiaojian Wen, Yuqian Feng, Zhenkai Liu, Shuai Ma, Xingyao Zhang","doi":"10.1094/PHYTO-07-24-0203-R","DOIUrl":"https://doi.org/10.1094/PHYTO-07-24-0203-R","url":null,"abstract":"<p><p>The pine wood nematode (PWN), <i>Bursaphelenchus xylophilus</i>, is one of the most serious invasive forest pests, responsible for pine wilt disease (PWD). Currently, there are no effective, environmentally friendly control methods available. RNA interference (RNAi) technology has been extensively utilized to screen functional genes in eukaryotes and to explore sustainable pest management approaches through genetic engineering. In this study, we identified 353 predicted lethal genes in PWN by comparing its genome with those of lethal genes from <i>Caenorhabditis elegans</i>. We selected five predicted lethal genes (<i>Bxy1177</i>, <i>Bxy1239</i>, <i>Bxy1104</i>, <i>Bxy667</i>, and <i>BxyAK1</i>) with identification values exceeding 60% to evaluate their nematicidal effects on PWN. We tested the double-stranded RNA (dsRNA) of these genes using two methods: firstly, soaking in a synthesized dsRNA solution in vitro, or secondly, feeding on a dsRNA-engineered endophytic fungus, <i>Fusarium babinda</i>. Following dsRNA ingestion, either through soaking or fungal feeding, the expression of genes <i>Bxy1177</i>, <i>Bxy667</i>, <i>Bxy1104</i>, and <i>BxyAK1</i> was significantly suppressed. Notably, nematode populations that consumed fungi expressing dsL1177 and dsAK1 showed substantial declines over time. These findings provide novel insights and a practical foundation for employing endophytic fungi-expressed dsRNA in sustainable pest management strategies.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nitrogen-metabolism inhibitor NmrA regulates conidial production, melanin synthesis and virulence in phytopathogenic fungus Verticillium dahliae. 氮代谢抑制剂 NmrA 可调控植物病原真菌大丽轮枝菌的分生孢子产生、黑色素合成和毒力。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-12-17 DOI: 10.1094/PHYTO-07-24-0226-R
Qi Xiao, Leyuan Zhang, Xueping Xu, Renyu Dai, Yingqing Tan, Xianbi Li, Dan Jin, Yanhua Fan
{"title":"A nitrogen-metabolism inhibitor NmrA regulates conidial production, melanin synthesis and virulence in phytopathogenic fungus <i>Verticillium dahliae</i>.","authors":"Qi Xiao, Leyuan Zhang, Xueping Xu, Renyu Dai, Yingqing Tan, Xianbi Li, Dan Jin, Yanhua Fan","doi":"10.1094/PHYTO-07-24-0226-R","DOIUrl":"https://doi.org/10.1094/PHYTO-07-24-0226-R","url":null,"abstract":"<p><p>NmrA homologs have been reported as conserved regulators of the nitrogen metabolite repression (NMR) in various fungi. Here, we identified a NmrA homolog in <i>Verticillium dahliae</i> and reported its functions in nitrogen utilization, growth and development, and pathogenesis. VdNmrA interacts with <i>V. dahliae</i> AreA protein and regulates the expression of a typical NCR target, the formamidase gene. <i>VdNmrA</i> deletion mutants exhibited significantly slower colony growth on media with Gln or Arg. Furthermore, <i>VdNmrA</i> deletion impaired hyphal growth, spore production, hyperosmotic stress tolerance, and melanin biosynthesis. Less ROS was produced in <i>VdNmrA</i> mutants, and the NADPH oxidase genes <i>noxA</i> and <i>noxB</i> showed lowered expression level compared to the wild type. <i>VdNmrA</i> mutants exhibited reduced virulence on cotton and <i>Arabidopsis</i> compared with wild type strains. Our results indicated that VdNmrA functioned as an NMR repressor and played important roles in nutrient utilization, fungal development, stress tolerance and pathogenicity in <i>V. dahliae</i>.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142838758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhizopus stolonifer exhibits necrotrophic behavior when causing soft rot in ripe fruit. 根瘤菌(Rhizopus stolonifer)在引起成熟水果软腐病时表现出坏死性。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-12-17 DOI: 10.1094/PHYTO-03-24-0081-R
Saskia Desiree Mesquida-Pesci, Abraham Morales-Cruz, Silvia Rodriguez-Pires, Rosa Figueroa-Balderas, Christian James Silva, Adrian Sbodio, Elia Gutierrez-Baeza, Petros Martin Raygoza, Dario Cantu, Barbara Blanco-Ulate
{"title":"<i>Rhizopus stolonifer</i> exhibits necrotrophic behavior when causing soft rot in ripe fruit.","authors":"Saskia Desiree Mesquida-Pesci, Abraham Morales-Cruz, Silvia Rodriguez-Pires, Rosa Figueroa-Balderas, Christian James Silva, Adrian Sbodio, Elia Gutierrez-Baeza, Petros Martin Raygoza, Dario Cantu, Barbara Blanco-Ulate","doi":"10.1094/PHYTO-03-24-0081-R","DOIUrl":"https://doi.org/10.1094/PHYTO-03-24-0081-R","url":null,"abstract":"<p><p><i>Rhizopus stolonifer</i> is known for causing soft rot in fruit and vegetables during postharvest. Although it has traditionally been considered a saprophyte, it appears to behave more like a necrotrophic pathogen. In this study, we propose that <i>R. stolonifer</i> invades host tissues by actively killing host cells and overcoming the host defense mechanisms, as opposed to growing saprophytically on decaying plant matter. We tested this hypothesis by characterizing <i>R. stolonifer</i> infection strategies when infecting four fruit hosts (tomato, grape, strawberry, and plum). We started by generating a high-quality genome assembly for <i>R. stolonifer</i> using PacBio sequencing. This led to a genome size of 45.02 Mb, an N50 of 2.87 Mb, and 12,644 predicted loci with protein-coding genes. Next, we performed a transcriptomic analysis to identify genes that <i>R. stolonifer</i> preferentially uses when growing in fruit versus culture media. We categorized these infection-related genes into clusters according to their expression patterns during the interaction with the host. Based on the expression data, we determined that <i>R. stolonifer</i> has a core infection toolbox consisting of strategies typical of necrotrophs, which includes a set of 33 oxidoreductases, 7 proteases, and 4 cell wall degrading enzymes to facilitate tissue breakdown and maceration across various hosts. This study provides new genomic resources for <i>R. stolonifer</i> and advances the knowledge of <i>Rhizopus</i>-fruit interactions, which can assist in formulating effective and sustainable integrated pest management approaches for soft rot prevention.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142838700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pink-pigmented variant of Clavibacter michiganensis expands phenotypic range of tomato bacterial canker pathogen. Clavibacter michiganensis 的粉红色变种扩大了番茄细菌性腐烂病病原体的表型范围。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-12-10 DOI: 10.1094/PHYTO-07-24-0236-R
Malihe Haghverdi, S Mohsen Taghavi, Sadegh Zarei, Hamzeh Mafakheri, Hamid Abachi, Martial Briand, Geraldine Taghouti, Perrine Portier, Marie-Agnes Jacques, Ebrahim Osdaghi
{"title":"Pink-pigmented variant of <i>Clavibacter michiganensis</i> expands phenotypic range of tomato bacterial canker pathogen.","authors":"Malihe Haghverdi, S Mohsen Taghavi, Sadegh Zarei, Hamzeh Mafakheri, Hamid Abachi, Martial Briand, Geraldine Taghouti, Perrine Portier, Marie-Agnes Jacques, Ebrahim Osdaghi","doi":"10.1094/PHYTO-07-24-0236-R","DOIUrl":"https://doi.org/10.1094/PHYTO-07-24-0236-R","url":null,"abstract":"<p><p>Bacterial canker of tomato caused by the Gram-positive corynebacterial species <i>Clavibacter michiganensis</i> is one of the most destructive seed-borne diseases in both open air and greenhouse tomatoes. The pathogen is a regulated agent in all tomato-producing countries as translocation of infected tomato materials transports the bacterium into new areas. <i>Clavibacter michiganensis</i> is generally known to have yellow-pigmented colonies on culture media, which is a key differentiative phenotypic feature in standard diagnostic guidelines. During 2020 and 2021, pink-pigmented corynebacterial strains were isolated from tomato seeds (cv. Sun 6189F1) and plants showing severe canker symptoms in Southern Iran. The six pink-pigmented strains were pathogenic on tomato and pepper seedlings under greenhouse conditions, and gave positive results with <i>C. michiganensis</i>-specific primers pairs described in the literature. Phylogenomics and DNA similarity calculations showed that the pink-pigmented strains were highly similar to the authentic yellow-pigmented members of the pathogen. Thus, they were identified as a new phenotypic variant of tomato bacterial canker pathogen. Whole genome screenings accomplished with PCR-based assays showed that the pink strains contain all pathogenicity determinant genes described in <i>C. michiganensis</i>. Further, orthologous gene clusters in the pink-pigmented strains were more similar to the pathogenic members of <i>C. michiganensis</i> than to those of non-pathogenic tomato-associated <i>Clavibacter</i> species. Results obtained in this study demonstrate the emergence of a new pink-pigmented variant of <i>C. michiganensis</i> and highlight the importance of colony pigmentation/morphology in culture-based detection of the bacterium. The need for updating diagnostic guidelines on the colony variants of the pathogen is further discussed.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A qPCR Assay for the Quantification of the Overwintering Chasmothecia of Erysiphe necator in Grapevine Bark. 用qPCR方法定量测定葡萄树皮中丹参越冬菌的数量。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-12-05 DOI: 10.1094/PHYTO-04-24-0126-R
Othmane Taibi, Margherita Furiosi, Maela León, Elisa González-Domínguez, Vittorio Rossi, Mónica Berbegal
{"title":"A qPCR Assay for the Quantification of the Overwintering Chasmothecia of <i>Erysiphe necator</i> in Grapevine Bark.","authors":"Othmane Taibi, Margherita Furiosi, Maela León, Elisa González-Domínguez, Vittorio Rossi, Mónica Berbegal","doi":"10.1094/PHYTO-04-24-0126-R","DOIUrl":"https://doi.org/10.1094/PHYTO-04-24-0126-R","url":null,"abstract":"<p><p>Powdery mildew (PM) disease causes serious losses in Mediterranean vineyards, where suitable environmental conditions promote conidial infections. The frequency and intensity of these infections are directly linked to the amount of primary <i>Erysiphe necator</i> inoculum, i.e., the chasmothecia embedded in the trunk. In this study, we set up a protocol to extract and quantify <i>E. necator</i> chasmothecia in grapevine bark samples based on a quantitative polymerase chain reaction (qPCR) assay. Moreover, we observed PM severity and ascocarp production on leaves in the first season and primary infection in the following season in different grapevine cvs. with known PM susceptibility levels. The qPCR analysis showed a significant relationship between <i>E. necator</i> DNA concentration in bark samples and primary infection (R<sup>2</sup> = 0.970) and disease severity development (R<sup>2</sup> = 0.776), as well as chasmothecia development on leaves (R<sup>2</sup> = 0.455). The results demonstrate that this methodology can be used for quantifying chasmothecia, improving current methods based on visual counting, proving the interrelationships between PM epidemics and chasmothecia, as well as refining PM disease prediction models and subsequent fungicide application. Rapid and easy quantification of ascosporic inoculum will greatly facilitate the reconciliation of control actions to the risks posed by greatly differing levels of ascosporic inoculum.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling Pinus massoniana's Defense Mechanisms Against Bursaphelenchus xylophilus Under Aseptic Conditions: A Transcriptomic Analysis. 揭示无菌条件下 Pinus massoniana 对 Bursaphelenchus xylophilus 的防御机制:转录组分析
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-12-01 Epub Date: 2024-12-16 DOI: 10.1094/PHYTO-06-24-0180-R
Jinghui Zhu, Kean-Jin Lim, Tianyu Fang, Chen Zhang, Jianren Ye, Li-Hua Zhu
{"title":"Unraveling <i>Pinus massoniana</i>'s Defense Mechanisms Against <i>Bursaphelenchus xylophilus</i> Under Aseptic Conditions: A Transcriptomic Analysis.","authors":"Jinghui Zhu, Kean-Jin Lim, Tianyu Fang, Chen Zhang, Jianren Ye, Li-Hua Zhu","doi":"10.1094/PHYTO-06-24-0180-R","DOIUrl":"10.1094/PHYTO-06-24-0180-R","url":null,"abstract":"<p><p>Pine wilt disease (PWD) is caused by the pine wood nematode (PWN, <i>Bursaphelenchus xylophilus</i>) and significantly impacts pine forest ecosystems globally. This study focuses on <i>Pinus massoniana</i>, an important timber and oleoresin resource in China, which is highly susceptible to PWN. However, the defense mechanism of pine trees in response to PWN remains unclear. Addressing the complexities of PWD, influenced by diverse factors such as bacteria, fungi, and environment, we established a reciprocal system between PWN and <i>P. massoniana</i> seedlings under aseptic conditions. Utilizing combined second- and third-generation sequencing technologies, we identified 3,718 differentially expressed genes post PWN infection. Transcript analysis highlighted the activation of defense mechanisms via stilbenes, salicylic acid and jasmonic acid pathways, terpene synthesis, and induction of pathogenesis-related proteins and resistance genes, predominantly at 72 h postinfection. Notably, terpene synthesis pathways, particularly the mevalonate pathway, were crucial in defense, suggesting their significance in <i>P. massoniana</i>'s response to PWN. This comprehensive transcriptome profiling offers insights into <i>P. massoniana</i>'s intricate defense strategies against PWN under aseptic conditions, laying a foundation for future functional analyses of key resistance genes. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2525-2535"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Siderophores Produced by Bacillus velezensis YL2021 and Its Application in Controlling Rice Sheath Blight and Rice Blast. Velezensis YL2021 杆菌产生的苷酸的特性及其在防治水稻鞘枯病和稻瘟病中的应用
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-12-01 Epub Date: 2024-12-17 DOI: 10.1094/PHYTO-04-24-0148-R
Youzhou Liu, Chen Dai, Yang Zuo, Junqing Qiao, Jiahui Shen, Xiaole Yin, Yongfeng Liu
{"title":"Characterization of Siderophores Produced by <i>Bacillus velezensis</i> YL2021 and Its Application in Controlling Rice Sheath Blight and Rice Blast.","authors":"Youzhou Liu, Chen Dai, Yang Zuo, Junqing Qiao, Jiahui Shen, Xiaole Yin, Yongfeng Liu","doi":"10.1094/PHYTO-04-24-0148-R","DOIUrl":"10.1094/PHYTO-04-24-0148-R","url":null,"abstract":"<p><p><i>Bacillus velezensis</i> YL2021 has extensive antimicrobial activities against phytopathogens, and its genome harbors a catechol-type siderophore biosynthesis gene cluster. Here, we describe the characterization of siderophores produced by strain YL2021 and its antimicrobial activity in vitro and in vivo. A few types of siderophores were detected by chrome azurol S plates coupled with Arnow's test, purified, and identified by reversed-phase high-performance liquid chromatography. We found that strain YL2021 can produce different antimicrobial compounds under low-iron M9 medium or iron-sufficient Luria-Bertani medium, although antimicrobial activities can be easily observed on the two media as described above in vitro. Strain YL2021 can produce at least three catechol-type siderophores in low-iron M9 medium, whereas no siderophores were produced in Luria-Bertani medium. Among them, the main antimicrobial siderophore produced by strain YL2021 was bacillibactin, with <i>m/z</i> 882, based on the liquid chromatography-tandem mass spectrometry analysis, which has broad-spectrum antimicrobial activities against gram-positive and gram-negative bacteria, the oomycete <i>Phytophthora capsici</i>, and phytopathogenic fungi. Moreover, the antifungal activity of siderophores, including bacillibactin, observed in vitro was correlated with control efficacies against rice sheath blight disease caused by <i>Rhizoctonia solani</i> and rice blast disease caused by <i>Magnaporthe oryzae</i> in vivo. Collectively, the results demonstrate that siderophores, including bacillibactin, produced by <i>B. velezensis</i> YL2021 are promising biocontrol agents for application in rice disease control.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2491-2501"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信