Phytopathology最新文献

筛选
英文 中文
A Nonessential Sfp-Type Phosphopantetheinyl Transferase Contributes Significantly to the Pathogenicity of Ralstonia solanacearum. 一种非必要的 Sfp 型磷酸泛酰乙烯基转移酶对 Ralstonia solanacearum 的致病性有重大贡献。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-11-01 Epub Date: 2024-11-21 DOI: 10.1094/PHYTO-04-24-0113-R
Yu Yin, Li-Zhen Luo, Lin-Lin Li, Zhe Hu, Yi-Cai Chen, Jin-Cheng Ma, Yong-Hong Yu, Hai-Hong Wang, Wen-Bin Zhang
{"title":"A Nonessential Sfp-Type Phosphopantetheinyl Transferase Contributes Significantly to the Pathogenicity of <i>Ralstonia solanacearum</i>.","authors":"Yu Yin, Li-Zhen Luo, Lin-Lin Li, Zhe Hu, Yi-Cai Chen, Jin-Cheng Ma, Yong-Hong Yu, Hai-Hong Wang, Wen-Bin Zhang","doi":"10.1094/PHYTO-04-24-0113-R","DOIUrl":"10.1094/PHYTO-04-24-0113-R","url":null,"abstract":"<p><p>4'-Phosphopantetheinyl transferases (PPTases) play important roles in the posttranslational modifications of bacterial carrier proteins, which are involved in various metabolic pathways. Here, we found that <i>RsacpS</i> and <i>RspcpS</i> encoded a functional AcpS-type and Sfp-type PPTase, respectively, in <i>Ralstonia solanacearum</i> GMI1000, and both are capable of modifying <i>R. solanacearum</i> AcpP1, AcpP2, AcpP3, and AcpP5 proteins. <i>RspcpS</i> is located on the megaplasmid, which does not affect strain growth and fatty acid synthesis but significantly contributes to the virulence of <i>R. solanacearum</i> and preferentially participates in secondary metabolism. We found that deletion of <i>RspcpS</i> did not affect the abilities of cellulose degradation, biofilm formation, and resistance to NaCl, sodium dodecyl sulfate, and H<sub>2</sub>O<sub>2</sub> and attenuated <i>R. solanacearum</i> pathogenicity only in the assay of soil-drenching infection but not stem injection of tomato. It is hypothesized that RsPcpS plays a role in cell viability in complex environments and in the process during which the strain recognizes and approaches plants. These results suggest that both RsAcpS and RsPcpS may be potential targets for controlling diseases caused by <i>R. solanacearum</i>.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2364-2374"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introgression and Mapping of a Novel Bacterial Blight Resistance Gene xa49(t) from Oryza rufipogon acc. CR100098A into O. sativa. 将 Oryza rufipogon acc.CR100098A到O.
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-11-01 Epub Date: 2024-11-21 DOI: 10.1094/PHYTO-02-24-0061-R
Sukhpreet Kaur Bhatia, Yogesh Vikal, Pavneet Kaur, Gurmanpuneet Singh Dhillon, Gurwinder Kaur, Kumari Neelam, Palvi Malik, Jagjeet Singh Lore, Renu Khanna, Kuldeep Singh
{"title":"Introgression and Mapping of a Novel Bacterial Blight Resistance Gene <i>xa49(t)</i> from <i>Oryza rufipogon</i> acc. CR100098A into <i>O. sativa</i>.","authors":"Sukhpreet Kaur Bhatia, Yogesh Vikal, Pavneet Kaur, Gurmanpuneet Singh Dhillon, Gurwinder Kaur, Kumari Neelam, Palvi Malik, Jagjeet Singh Lore, Renu Khanna, Kuldeep Singh","doi":"10.1094/PHYTO-02-24-0061-R","DOIUrl":"10.1094/PHYTO-02-24-0061-R","url":null,"abstract":"<p><p>Bacterial blight (BB) caused by <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> is one of the epidemic diseases in rice. Rapid changes in the pathogenicity of the <i>X. oryzae</i> pv. <i>oryzae</i> pathogen demand the identification and characterization of novel BB resistance genes. Here, we report the transfer and mapping of a new BB resistance gene from <i>Oryza rufipogon</i> acc. CR100098A. Inheritance studies on the BC<sub>2</sub>F<sub>2</sub> population, BC<sub>2</sub>F<sub>3</sub> progenies, and backcross-derived recombinant inbred lines derived from a cross between Pusa44/<i>O. rufipogon</i> acc. CR100098A//2<sup>*</sup>PR114 showed that a single recessive gene confers resistance in <i>O. rufipogon</i> acc. CR100098A. Bulked segregant analysis using 203 simple sequence repeat (SSR) markers localized the BB resistance gene on chromosome 11 bracketed between two SSR markers, RM27235 and RM2136. Using PR114 and <i>O. rufipogon</i> acc. CR100098A genotyping by sequencing data, 86 KASP markers within the bracketed region were designed and tested for bulked segregant analysis. Only five KASP markers showed polymorphism between parents, and three were associated with the target gene. Seventy-seven new SSR markers were designed from the same interval. A total of 33 polymorphic markers were analyzed on the whole population and mapped the BB gene in an interval of 2.8 cM flanked by SSR markers PAU11_65 and PAU11_44 within a physical distance of 376.3 kb. The BB resistance gene mapped in this study is putatively new and designated as <i>xa49(t)</i>. Fourteen putative candidate genes were identified within the <i>xa49(t)</i> region having a role in biotic stress resistance. The linked markers to the <i>xa49(t)</i> gene were validated in other rice cultivars for its successful deployment in BB resistance breeding.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2412-2420"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Oxalic Acid in Clarireedia jacksonii Virulence and Development on Creeping Bentgrass. 草酸在 Clarireedia jacksonii 对匍匐翦股颖的毒力和发育过程中的作用。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-11-01 Epub Date: 2024-11-21 DOI: 10.1094/PHYTO-03-24-0094-R
Daowen Huo, Nathaniel M Westrick, Ashley Nelson, Mehdi Kabbage, Paul Koch
{"title":"The Role of Oxalic Acid in <i>Clarireedia jacksonii</i> Virulence and Development on Creeping Bentgrass.","authors":"Daowen Huo, Nathaniel M Westrick, Ashley Nelson, Mehdi Kabbage, Paul Koch","doi":"10.1094/PHYTO-03-24-0094-R","DOIUrl":"10.1094/PHYTO-03-24-0094-R","url":null,"abstract":"<p><p>Dollar spot is a destructive foliar disease of amenity turfgrass caused by <i>Clarireedia</i> spp. fungi, mainly <i>C. jacksonii</i>, on the Northern United States region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as <i>Sclerotinia sclerotiorum</i>; however, the role of OA in the pathogenic development of <i>C. jacksonii</i> remains unclear due to its recalcitrance to genetic manipulation. To overcome these challenges, a CRISPR/Cas9-mediated homologous recombination approach was developed. Using this novel approach, the oxaloacetate acetylhydrolase (<i>oah</i>) gene that is required for the biosynthesis of OA was deleted from a <i>C. jacksonii</i> wild-type (WT) strain. Two independent knockout mutants, Δ<i>Cjoah-1</i> and Δ<i>Cjoah-2</i>, were generated and inoculated on potted creeping bentgrass along with a WT isolate and a genome sequenced isolate LWC-10. After 12 days, bentgrass inoculated with the mutants Δ<i>Cjoah-1</i> and Δ<i>Cjoah-2</i> exhibited 59.41% lower dollar spot severity compared with the WT and LWC-10 isolates. OA production and environmental acidification were significantly reduced in both mutants when compared with the WT and LWC-10. Surprisingly, stromal formation was also severely undermined in the mutants in vitro, suggesting a critical developmental role of OA independent of plant infection. These results demonstrate that OA plays a significant role in <i>C. jacksonii</i> virulence and provide novel directions for future management of dollar spot. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2394-2400"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Variability and Evolutionary Dynamics of Papaya Ringspot Virus and Papaya Leaf Distortion Mosaic Virus Infecting Feral Papaya in Hainan Island. 海南岛野生番木瓜感染木瓜环斑病毒和木瓜叶扭曲花叶病毒的遗传变异与进化动态。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-11-01 Epub Date: 2024-11-19 DOI: 10.1094/PHYTO-01-24-0022-R
Mu-Zhi Yang, Zhi-Gang Hao, Zhen-Tao Ren, Rui Tang, Qing-Hua Wu, Li-Ying Zhou, Yu-Juan Hu, Jing-Yuan Guo, Yi Chen, Yun-Ling Guo, Biao Liu, Lai-Pan Liu, Kun Xue, Rui-Zong Jia
{"title":"Genetic Variability and Evolutionary Dynamics of Papaya Ringspot Virus and Papaya Leaf Distortion Mosaic Virus Infecting Feral Papaya in Hainan Island.","authors":"Mu-Zhi Yang, Zhi-Gang Hao, Zhen-Tao Ren, Rui Tang, Qing-Hua Wu, Li-Ying Zhou, Yu-Juan Hu, Jing-Yuan Guo, Yi Chen, Yun-Ling Guo, Biao Liu, Lai-Pan Liu, Kun Xue, Rui-Zong Jia","doi":"10.1094/PHYTO-01-24-0022-R","DOIUrl":"10.1094/PHYTO-01-24-0022-R","url":null,"abstract":"<p><p>Commercialized genetically modified (GM) papaya cultivars have protected papaya from the devastating disease caused by papaya ringspot virus (PRSV). However, papaya leaf distortion mosaic virus (PLDMV), which causes similar infection symptoms but is serologically distinct from PRSV, was found to be a competitive threat to the papaya industry. Our study surveyed the occurrence of PRSV and PLDMV, as well as the transgenic markers of the 35S promoter from cauliflower mosaic virus and the neomycin phosphotransferase II gene in feral papaya plants, which were found frequently growing outside of cultivated papaya fields on Hainan Island. In total, 123 feral papayas, comprising 62 (50.4%) GM plants and 61 (49.6%) non-GM ones, were sampled. Among them, 23 (18.7%) were positive for PRSV, 49 (39.8%) were positive for PLDMV (including five plants co-infected by PRSV and PLDMV), and 56 (45.5%) were free of either virus. In traditional papaya-growing regions, we detected fewer PRSV-infected plants (2 in 33, 6%) than in other regions (21 in 90, 23%). However, overall, whether plants were transgenic or not made no difference to PRSV incidence (<i>P</i> = 0.230), with 9 PRSV-infected plants among 62 GM papayas and 14 among 61 non-GM papayas. Phylogenetic and genetic differentiation analysis showed a clear correlation between PRSV and PLDMV populations and their geographic origins. Negative selection was estimated for the selected gene regions of both viruses. Notably, PLDMV has deviated from neutral evolution and experienced population expansion, exhibiting increased genetic diversity, and is becoming the predominant threat to papaya in Hainan.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2442-2452"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TOMMicroNet: Convolutional Neural Networks for Smartphone-Based Microscopic Detection of Tomato Biotic and Abiotic Plant Health Issues. TOMMicroNet:基于智能手机的卷积神经网络,用于番茄生物和非生物植物健康问题的显微检测。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-11-01 Epub Date: 2024-10-30 DOI: 10.1094/PHYTO-04-23-0123-R
Sruthi Sentil, Manoj Choudhary, Mubin Tirsaiwala, Sandeep Rvs, Vignesh Mahalingam Suresh, Chacko Jacob, Mathews Paret
{"title":"TOMMicroNet: Convolutional Neural Networks for Smartphone-Based Microscopic Detection of Tomato Biotic and Abiotic Plant Health Issues.","authors":"Sruthi Sentil, Manoj Choudhary, Mubin Tirsaiwala, Sandeep Rvs, Vignesh Mahalingam Suresh, Chacko Jacob, Mathews Paret","doi":"10.1094/PHYTO-04-23-0123-R","DOIUrl":"10.1094/PHYTO-04-23-0123-R","url":null,"abstract":"<p><p>The image-based detection and classification of plant diseases has become increasingly important to the development of precision agriculture. We consider the case of tomato, a high-value crop supporting the livelihoods of many farmers around the world. Many biotic and abiotic plant health issues impede the efficient production of this crop, and laboratory-based diagnostics are inaccessible in many remote regions. Early detection of these plant health issues is essential for efficient and accurate response, prompting exploration of alternatives for field detection. Considering the availability of low-cost smartphones, artificial intelligence-based classification facilitated by mobile phone imagery can be a practical option. This study introduces a smartphone-attachable 30× microscopic lens, used to produce the novel tomato microimaging data set of 8,500 images representing 34 tomato plant conditions on the upper and lower sides of leaves as well as on the surface of tomato fruits. We introduce TOMMicroNet, a 14-layer convolutional neural network (CNN) trained to classify biotic and abiotic plant health issues, and we compare it against six existing pretrained CNN models. We compared two separate pipelines of grouping data for training TOMMicroNet, either presenting all data at once or separating the data into subsets based on the three parts of the plant. Comparing configurations based on cross-validation and F1 scores, we determined that TOMMicroNet attained the highest performance when trained on the complete data set, with 95% classification accuracy on both training and external data sets. Given TOMMicroNet's capabilities when presented with unfamiliar data, this approach has potential for the identification of plant health issues.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2431-2441"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrated analysis of the Passifloraceae virome using public-domain data. 利用公共域数据综合分析西番莲科植物病毒群。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-10-10 DOI: 10.1094/PHYTO-08-24-0269-FI
Monica Higuita, Juliana Sanchez-Yali, Alejandra Perez, Engie Arias, Pablo A Gutierrez
{"title":"An integrated analysis of the <i>Passifloraceae</i> virome using public-domain data.","authors":"Monica Higuita, Juliana Sanchez-Yali, Alejandra Perez, Engie Arias, Pablo A Gutierrez","doi":"10.1094/PHYTO-08-24-0269-FI","DOIUrl":"https://doi.org/10.1094/PHYTO-08-24-0269-FI","url":null,"abstract":"<p><p><i>Passifloraceae</i> is a plant family that includes several species of interest in the food, medicinal, and ornamental industries. The most relevant species are the purple and yellow varieties of <i>P. edulis</i>, which are among the most highly prized tropical fruits in the international markets. Unfortunately, the rapid expansion of this crop worldwide has resulted in the emergence of several viral diseases that endangered the productivity of this crop. In this work, we performed an integrated analysis of the <i>Passifloraceae</i> virome using public data. We investigated Pubmed and Genbank records and analyzed all the transcriptome data available for members of this plant family. This analysis resulted in the identification of six novel virus associations and six putative new viral species. We also used RNAseq to inspect virus accumulation levels and mixed infections. Using network analysis, we also examined the global distribution of Passiflora viruses and their associations with alternative hosts, which is valuable information in implementing viral disease management strategies. Our data suggest that a large diversity of viruses remains to be discovered. Finally, we used the information gathered in this work to estimate the cross-transmission risk of viruses in Colombian Passiflora fields.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CbCyp51-Mediated Demethylation Inhibitor Resistance Is Modulated by Codon Bias. CbCyp51 介导的 DMI 抗性受密码子偏差的调节。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-10-01 Epub Date: 2024-10-07 DOI: 10.1094/PHYTO-01-24-0034-R
Lorena I Rangel, Nathan Wyatt, Isaac Courneya, Mari B Natwick, Gary A Secor, Viviana Rivera-Varas, Melvin D Bolton
{"title":"<i>CbCyp51</i>-Mediated Demethylation Inhibitor Resistance Is Modulated by Codon Bias.","authors":"Lorena I Rangel, Nathan Wyatt, Isaac Courneya, Mari B Natwick, Gary A Secor, Viviana Rivera-Varas, Melvin D Bolton","doi":"10.1094/PHYTO-01-24-0034-R","DOIUrl":"10.1094/PHYTO-01-24-0034-R","url":null,"abstract":"<p><p>Cercospora leaf spot, caused by the fungus Cercospora beticola, is the most destructive foliar disease of sugarbeet worldwide. Resistance to the sterol demethylation inhibitor (DMI) fungicide tetraconazole has been previously correlated with synonymous and nonsynonymous mutations in <i>CbCyp51</i>. Here, we extend these analyses to the DMI fungicides prothioconazole, difenoconazole, and mefentrifluconazole in addition to tetraconazole to confirm whether the synonymous and nonsynonymous mutations at amino acid positions 144 and 170 are associated with resistance to these fungicides. Nearly half of the 593 isolates of <i>C. beticola</i> collected in the Red River Valley of North Dakota and Minnesota in 2021 were resistant to all four DMIs. Another 20% were resistant to tetraconazole and prothioconazole but sensitive to difenoconazole and mefentrifluconazole. A total of 13% of isolates were sensitive to all DMIs tested. We found five <i>CbCyp51</i> haplotypes and associated them with phenotypes to the four DMIs. The most predominant haplotype (E170_A/L144F_C) correlated with resistance to all four DMIs with up to 97.6% accuracy. The second most common haplotype (E170_A/L144) consisted of isolates associated with resistance phenotypes to tetraconazole and prothioconazole while also exhibiting sensitive phenotypes to difenoconazole and mefentrifluconazole with up to 98.4% accuracy. Quantitative PCR did not identify differences in <i>CbCyp51</i> expression between haplotypes. This study offers an understanding of the importance of codon usage in fungicide resistance and provides crop management acuity for fungicide application decision-making.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2262-2272"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What Explains Hop Growers' Fungicide Use Intensity and Management Costs in Response to Powdery Mildew? 酒花种植者在应对白粉病时使用杀菌剂的强度和管理成本的原因是什么?
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-10-01 Epub Date: 2024-10-15 DOI: 10.1094/PHYTO-04-24-0127-R
Jae Young Hwang, Sharmodeep Bhattacharyya, Shirshendu Chatterjee, Thomas L Marsh, Joshua F Pedro, David H Gent
{"title":"What Explains Hop Growers' Fungicide Use Intensity and Management Costs in Response to Powdery Mildew?","authors":"Jae Young Hwang, Sharmodeep Bhattacharyya, Shirshendu Chatterjee, Thomas L Marsh, Joshua F Pedro, David H Gent","doi":"10.1094/PHYTO-04-24-0127-R","DOIUrl":"10.1094/PHYTO-04-24-0127-R","url":null,"abstract":"<p><p>Methods for causal inference from observational data are common in human disease epidemiology and social sciences but are used relatively little in plant pathology. We draw upon an extensive data set of the incidence of hop plants with powdery mildew (caused by <i>Podosphaera macularis</i>) collected from yards in Oregon from 2014 to 2017 and associated metadata on grower cultural practices, cultivar susceptibility to powdery mildew, and pesticide application records to understand variation in and causes of growers' fungicide use and associated costs. An instrumental causal forest model identified growers' spring pruning thoroughness, cultivar susceptibility to two of the dominant pathogenic races of <i>P. macularis</i>, network centrality of yards during May-June and June-July time transitions, and the initial strain of the fungus detected as important variables determining the number of pesticide active constituents applied by growers and the associated costs they incurred in response to powdery mildew. Exposure-response function models fit after covariate weighting indicated that both the number of pesticide active constituents applied and their associated costs scaled linearly with the seasonal mean incidence of plants with powdery mildew. Although the causes of pesticide use intensity are multifaceted, biological and production factors collectively influence the incidence of powdery mildew, which has a direct exposure-response relationship with the number of pesticide active constituents that growers apply and their costs. Our analyses point to several potential strategies for reducing pesticide use and costs for management of powdery mildew on hop. We also highlight the utility of these methods for causal inference in observational studies.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2287-2299"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Transcriptomic Analysis of Soybean Cyst Nematode Inbred Populations Non-adapted or Adapted on Soybean rhg1-a/Rhg4-Mediated Resistance. 不适应或适应大豆 rhg1-a/Rhg4 介导的抗性的大豆胞囊线虫近交系种群的转录组比较分析。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-10-01 Epub Date: 2024-10-04 DOI: 10.1094/PHYTO-03-24-0095-R
Khee Man Kwon, Rick E Masonbrink, Thomas R Maier, Michael N Gardner, Andrew J Severin, Thomas J Baum, Melissa G Mitchum
{"title":"Comparative Transcriptomic Analysis of Soybean Cyst Nematode Inbred Populations Non-adapted or Adapted on Soybean <i>rhg1-a</i>/<i>Rhg4</i>-Mediated Resistance.","authors":"Khee Man Kwon, Rick E Masonbrink, Thomas R Maier, Michael N Gardner, Andrew J Severin, Thomas J Baum, Melissa G Mitchum","doi":"10.1094/PHYTO-03-24-0095-R","DOIUrl":"10.1094/PHYTO-03-24-0095-R","url":null,"abstract":"<p><p>Soybean cyst nematode (SCN, <i>Heterodera glycines</i>) is most effectively managed through planting resistant soybean cultivars, but the repeated use of the same resistance sources has led to a widespread emergence of virulent SCN populations that can overcome soybean resistance. Resistance to SCN HG type 0 (Race 3) in soybean cultivar Forrest is mediated by an epistatic interaction between the soybean resistance genes <i>rhg1-a</i> and <i>Rhg4</i>. We previously developed two SCN inbred populations by mass-selecting SCN HG type 0 (Race 3) on susceptible and resistant recombinant inbred lines, derived from a cross between Forrest and the SCN-susceptible cultivar Essex, which differ for <i>Rhg4</i>. To identify SCN genes potentially involved in overcoming <i>rhg1-a</i>/<i>Rhg4</i>-mediated resistance, we conducted RNA sequencing on early parasitic juveniles of these two SCN inbred populations infecting their respective hosts, only to discover a handful of differentially expressed genes (DEGs). However, in a comparison with early parasitic juveniles of an avirulent SCN inbred population infecting a resistant host, we discovered 59 and 171 DEGs uniquely up- or downregulated in virulent parasitic juveniles adapted on the resistant host. Interestingly, the proteins coded by these 59 DEGs included vitamin B-associated proteins (reduced folate carrier, biotin synthase, and thiamine transporter) and nematode effectors known to play roles in plant defense suppression, suggesting that virulent SCN may exert a heightened transcriptional response to cope with enhanced plant defenses and an altered nutritional status of a resistant soybean host. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2341-2350"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of Increasing Soil Salinity on Genetic Resistance (I-3 Gene)-Based Management of Fusarium Wilt (Fusarium oxysporum f. sp. lycopercisi Race 3) in California Processing Tomatoes. 土壤盐度增加对基于遗传抗性(I-3 基因)的加利福尼亚加工番茄镰刀菌枯萎病(F. oxysporum f. sp. lycopercisi race 3)管理的影响。
IF 2.6 2区 农林科学
Phytopathology Pub Date : 2024-10-01 Epub Date: 2024-10-03 DOI: 10.1094/PHYTO-10-23-0402-KC
Elizabeth M Hellman, Thomas Turini, Cassandra L Swett
{"title":"Impacts of Increasing Soil Salinity on Genetic Resistance (<i>I-3</i> Gene)-Based Management of Fusarium Wilt (<i>Fusarium oxysporum</i> f. sp. <i>lycopercisi</i> Race 3) in California Processing Tomatoes.","authors":"Elizabeth M Hellman, Thomas Turini, Cassandra L Swett","doi":"10.1094/PHYTO-10-23-0402-KC","DOIUrl":"10.1094/PHYTO-10-23-0402-KC","url":null,"abstract":"<p><p>California is the primary processing tomato (<i>Solanum lycopersicum</i>) producer in the United States. <i>Fusarium oxysporum</i> f. sp. <i>lycopercisi</i> race 3 (Fol3), the cause of Fusarium wilt, is a major driver of yield losses. Fol3 has recently been observed causing disease in resistant cultivars (<i>I-3</i> R-gene), often reported in association with high soil salinity. This study was undertaken to better understand the role of salinity in compromising resistance-based management of Fol3. Surveys established opportunity for salinity-Fol3-tomato interactions in 44% of commercial fields examined, with harmful soil salt levels up to 3.6 dS/m (<i>P</i> < 0.001), high sodium (<i>P</i> < 0.001), and high sodicity (sodium adsorption ratio > 13; <i>P</i> < 0.001). In controlled field studies of Fol3 in NaCl/CaCl<sub>2</sub>-treated soil, Fol3-resistant cultivars either only developed wilt under salt or only developed wilt above the industry non-hybrid threshold (2%) under salt across two trial years. The absence of yield differences indicates low to no economic impact of disease enhancement (<i>P</i> > 0.05). NaCl, CaCl<sub>2</sub>, and Na<sub>2</sub>SO<sub>4</sub> had no effect on Fol3 propagule production in liquid agar versus water agar controls (<i>P</i> > 0.05), although CaCl<sub>2</sub> increased propagule loads sevenfold versus ionic controls (polyethylene glycol) (<i>P</i> = 0.036). NaCl/CaCl<sub>2</sub> (2:1) reduced propagule loads up to 65% versus no salt (<i>P</i> = 0.029) in soil with pathogen-infested tomato tissue. These results together establish the opportunity for salinity-Fol3-tomato interactions and potential for salt to influence the efficacy of resistant cultivar-based management-this does not appear to be primarily due to salt enhancement of pathogen populations, pointing to a yet-unexplored direct influence of salt on host resistance.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2252-2261"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信