Population Genomic Analysis of Two Independent Clonal Invasions of the Sudden Oak Death Pathogen into One Forest.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES
Nicholas C Cauldron, Hazel A Daniels, Jared M LeBoldus, Niklaus J Grünwald
{"title":"Population Genomic Analysis of Two Independent Clonal Invasions of the Sudden Oak Death Pathogen into One Forest.","authors":"Nicholas C Cauldron, Hazel A Daniels, Jared M LeBoldus, Niklaus J Grünwald","doi":"10.1094/PHYTO-10-24-0329-FI","DOIUrl":null,"url":null,"abstract":"<p><p>Upon introduction, clonal pathogen populations are expected to go through a genetic bottleneck followed by gradual clonal divergence. Two distinct and purely clonal lineages of the sudden oak death pathogen <i>Phytophthora ramorum</i> recently emerged in forests in the Western United States, providing the unique opportunity to study a naturally replicated invasion into the same ecosystem. We characterized population genomic patterns during early invasion using whole genome sequencing of two <i>P. ramorum</i> clonal lineages sampled in the first five years following their detection. We re-sequenced genomes from populations of two dominant clonal lineages, NA1 (n=134; 2001-2005) and EU1 (n=160; 2015-2019), and obtained 106,070 high-quality SNPs in genic regions. Our results are consistent with the hypothesis of one introduction for each lineage. The NA1 population had a wider distribution of pairwise genetic distances than EU1 and higher genetic diversity, though neither NA1 nor EU1 populations clustered clearly by year. There was significant correlation between genetic distance and geographic distance for NA1 (<i>p</i> = 0.042), but not for EU1 (<i>p</i> = 0.402). The genetic diversity in NA1 is strongly driven by loss of heterozygous positions, which impacted more than one-third of the sampled NA1 population. However, loss of heterozygosity was rare in EU1. This work provides novel insights into the invasion biology and dynamics of clonal plant pathogens in natural ecosystems.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-10-24-0329-FI","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Upon introduction, clonal pathogen populations are expected to go through a genetic bottleneck followed by gradual clonal divergence. Two distinct and purely clonal lineages of the sudden oak death pathogen Phytophthora ramorum recently emerged in forests in the Western United States, providing the unique opportunity to study a naturally replicated invasion into the same ecosystem. We characterized population genomic patterns during early invasion using whole genome sequencing of two P. ramorum clonal lineages sampled in the first five years following their detection. We re-sequenced genomes from populations of two dominant clonal lineages, NA1 (n=134; 2001-2005) and EU1 (n=160; 2015-2019), and obtained 106,070 high-quality SNPs in genic regions. Our results are consistent with the hypothesis of one introduction for each lineage. The NA1 population had a wider distribution of pairwise genetic distances than EU1 and higher genetic diversity, though neither NA1 nor EU1 populations clustered clearly by year. There was significant correlation between genetic distance and geographic distance for NA1 (p = 0.042), but not for EU1 (p = 0.402). The genetic diversity in NA1 is strongly driven by loss of heterozygous positions, which impacted more than one-third of the sampled NA1 population. However, loss of heterozygosity was rare in EU1. This work provides novel insights into the invasion biology and dynamics of clonal plant pathogens in natural ecosystems.

橡树猝死病菌两次独立无性系入侵同一森林的种群基因组分析。
在引进后,克隆病原菌群体预计会经历一个遗传瓶颈,随后是逐渐的克隆分化。橡树猝死病原体疫霉(Phytophthora ramorum)最近在美国西部的森林中出现了两种截然不同的纯无性系,这为研究同一生态系统中自然复制的入侵提供了独特的机会。研究人员对两种黑桫树克隆谱系进行了全基因组测序,分析了入侵早期的种群基因组模式。我们重新测序了两个优势克隆谱系的基因组,NA1 (n=134;2001-2005)和欧盟(n=160;2015-2019),获得基因区106070个高质量snp。我们的结果与每个谱系一次引入的假设是一致的。NA1群体的遗传距离比EU1群体大,遗传多样性也比EU1群体高,但NA1和EU1群体的年聚类都不明显。遗传距离与地理距离对NA1的影响显著(p = 0.042),对EU1的影响不显著(p = 0.402)。NA1的遗传多样性受到杂合位点缺失的强烈驱动,影响了三分之一以上的NA1群体。然而,在EU1中,杂合性缺失是罕见的。这项工作为自然生态系统中克隆植物病原体的入侵生物学和动力学提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信