PlantaPub Date : 2024-09-10DOI: 10.1007/s00425-024-04508-w
Hiroo Takaragawa, Masataka Wakayama
{"title":"Responses of leaf gas exchange and metabolites to drought stress in different organs of sugarcane and its closely related species Erianthus arundinaceus","authors":"Hiroo Takaragawa, Masataka Wakayama","doi":"10.1007/s00425-024-04508-w","DOIUrl":"https://doi.org/10.1007/s00425-024-04508-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main conclusion</h3><p>The high intrinsic water-use efficiency of <i>Erianthus</i> may be due to the low abaxial stomatal density and the accumulation of leaf metabolites such as betaine and gamma-aminobutyric acid.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Sugarcane is an important crop that is widely cultivated in tropical and subtropical regions of the world. Because drought is among the main impediments limiting sugarcane production in these regions, breeding of drought-tolerant sugarcane varieties is important for sustainable production. <i>Erianthus arundinaceus</i>, a species closely related to sugarcane, exhibits high intrinsic water-use efficiency (<i>iWUE</i>), the underlying mechanisms for which remain unknown. To improve the genetic base for conferring drought tolerance in sugarcane, in the present study, we performed a comprehensive comparative analysis of leaf gas exchange and metabolites in different organs of sugarcane and <i>Erianthus</i> under wet and dry soil-moisture conditions. <i>Erianthus</i> exhibited lower stomatal conductance under both conditions, which resulted in a higher <i>iWUE</i> than in sugarcane. Organ-specific metabolites showed gradations between continuous parts and organs, suggesting linkages between them. Cluster analysis of organ-specific metabolites revealed the effects of the species and treatments in the leaves. Principal component analysis of leaf metabolites confirmed a rough ordering of the factors affecting their accumulations. Compared to sugarcane leaf, <i>Erianthus</i> leaf accumulated more raffinose, betaine, glutamine, gamma-aminobutyric acid, and <i>S</i>-adenosylmethionine, which function as osmolytes and stress-response compounds, under both the conditions. Our extensive analyses reveal that the high <i>iWUE</i> of <i>Erianthus</i> may be due to the specific accumulation of such metabolites in the leaves, in addition to the low stomatal density on the abaxial side of leaves. The identification of drought-tolerance traits of <i>Erianthus</i> will benefit the generation of sugarcane varieties capable of withstanding drought stress.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":20177,"journal":{"name":"Planta","volume":"5 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-09-09DOI: 10.1007/s00425-024-04519-7
Chulmin Park, Youbong Hyun, Ji-Young Lee
{"title":"Female gametophyte development is required for nucellar-tip degeneration during Arabidopsis ovule development","authors":"Chulmin Park, Youbong Hyun, Ji-Young Lee","doi":"10.1007/s00425-024-04519-7","DOIUrl":"https://doi.org/10.1007/s00425-024-04519-7","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main conclusion</h3><p>Genetic ablation of the female gametophyte provides direct evidence for the existence of interregional communication during <i>Arabidopsis</i> ovule development and the importance of the female gametophyte in nucellar-tip degeneration.</p><p>The angiosperm ovule consists of three regions: the female gametophyte, the nucellus, and the integuments, all of which develop synchronously and coordinately. Previously, interregional communication enabling cooperative ovule development had been proposed; however, the evidence for these communications mostly relies on the analysis of mutant phenotypes. To provide direct evidence, we specifically ablated the <i>Arabidopsis</i> female gametophyte by expressing the diphtheria toxin fragment A (DTA) under the female gametophyte-specific <i>DD13</i> promoter and analyzed its effects on the development of the nucellus and the integuments. We found that the female gametophyte is not required for integument development or for the orientation and curvature of the ovule body, but is necessary for nucellar-tip degeneration. The results presented here provide direct evidence for communication from the female gametophyte to the nucellus and demonstrate that <i>Arabidopsis</i> ovules require interregional communication for cooperative development.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"1581 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-09-04DOI: 10.1007/s00425-024-04511-1
V Rakesh, Amalendu Ghosh
{"title":"Advancements in genetically modified insect pest-resistant crops in India.","authors":"V Rakesh, Amalendu Ghosh","doi":"10.1007/s00425-024-04511-1","DOIUrl":"10.1007/s00425-024-04511-1","url":null,"abstract":"<p><strong>Main conclusion: </strong>The review offers insights into the current state of research on insect pest-resistant GM crops and the regulations governing the cultivation of GM crops in India. India has a rich crop diversity of more than 160 major and minor crops through its diverse agroclimatic conditions. Insect pests alone cause around USD 36 billion in crop loss annually in India. The last two decades witnessed considerable progress in managing insect pests by adopting innovative techniques including transgenics. In research, significant advancement has been brought in insect pest-resistant transgenics in India since its inception in 2002. However, any events have not been endorsed owing to biosafety impediments, except Bt cotton reaching the commercial release stage. A landmark decision to exempt certain types of gene-edited plants from genetically modified organism (GMO) regulations offers great promise for developing novel insect-resistant crops in India. The article reviews the current research on insect pest-resistant transgenics and its regulations in India.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 4","pages":"86"},"PeriodicalIF":3.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-09-04DOI: 10.1007/s00425-024-04504-0
Muhammad Tanveer Altaf, Waqas Liaqat, Amna Jamil, Muhammad Faheem Jan, Faheem Shehzad Baloch, Celaleddin Barutçular, Muhammad Azhar Nadeem, Heba I Mohamed
{"title":"Strategies and bibliometric analysis of legumes biofortification to address malnutrition.","authors":"Muhammad Tanveer Altaf, Waqas Liaqat, Amna Jamil, Muhammad Faheem Jan, Faheem Shehzad Baloch, Celaleddin Barutçular, Muhammad Azhar Nadeem, Heba I Mohamed","doi":"10.1007/s00425-024-04504-0","DOIUrl":"10.1007/s00425-024-04504-0","url":null,"abstract":"<p><strong>Main conclusion: </strong>Biofortification of legumes using diverse techniques such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches presents a sustainable strategy to address micronutrient deficiencies of underprivileged populations. The widespread issue of chronic malnutrition, commonly referred to as \"hidden hunger,\" arises from the consumption of poor-quality food, leading to various health and cognitive impairments. Biofortified food crops have been a sustainable solution to address micronutrient deficiencies. This review highlights multiple biofortification techniques, such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches, aimed at enhancing the nutrient content of commonly consumed crops. Emphasizing the biofortification of legumes, this review employs bibliometric analysis to examine research trends from 2000 to 2023. It identifies key authors, influential journals, contributing countries, publication trends, and prevalent keywords in this field. The review highlights the progress in developing biofortified crops and their potential to improve global nutrition and help underprivileged populations.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 4","pages":"85"},"PeriodicalIF":3.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-08-31DOI: 10.1007/s00425-024-04509-9
Ke Xu, Ping Wang
{"title":"Transcriptome-wide identification of the Hsp70 gene family in Pugionium cornutum and functional analysis of PcHsp70-5 under drought stress.","authors":"Ke Xu, Ping Wang","doi":"10.1007/s00425-024-04509-9","DOIUrl":"10.1007/s00425-024-04509-9","url":null,"abstract":"<p><strong>Main conclusion: </strong>The PcHsp70-5 enhances drought stress tolerance in transgenic Arabidopsis thaliana by upregulating stress tolerance genes and antioxidant enzyme activities. Heat shock proteins (HSPs) constitute a class of evolutionarily conserved proteins synthesized by organisms in response to various adverse environmental stimuli such as elevated temperatures, drought, hormonal fluctuations, high salt concentrations, and mechanical stress. However, research on HSPs has predominantly focused on model plants and crops, whereas their functions in desert plants have not been well investigated. This study analyzed the transcriptome of Pugionium cornutum and identified the complete ORFs of 25 genes of the PcHsp70 family genes. Their expression levels under drought stress were investigated using existing RNA-seq data. PcHsp70-5 genes exhibited high expression levels in both roots and leaves under drought stress. Consequently, the PcHsp70-5 genes were cloned and transformed into Arabidopsis thaliana for further analysis of their roles in drought stress response. Real-time fluorescence quantitative PCR (qRT-PCR) analysis demonstrated that both, drought stress and ABA, induced PcHsp70-5 expression. Under drought conditions, transgenic Arabidopsis plants exhibited markedly enhanced growth compared to wild-type plants, as evidenced by improved survival rates, root length, fresh weight, chlorophyll content, and reduced levels of malondialdehyde (MDA) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in leaves, indicating that PcHsp70-5 overexpression mitigated growth inhibition and oxidative damage induced by drought stress. Subsequent research revealed that PcHsp70-5 overexpression significantly augmented the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and increased the proline content in transgenic Arabidopsis under drought conditions, alongside a significant increase in the expression levels of genes related to stress tolerance. This suggests that PcHsp70-5 enhances drought stress tolerance in transgenic Arabidopsis by upregulating stress tolerance genes and antioxidant enzyme activities.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 4","pages":"84"},"PeriodicalIF":3.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Karyotypic and phenotypic condensation in allotetraploid wheats accompanied with reproductive strategy transformation: from natural evolution to domestication.","authors":"Wei Fan, Meiqi Sun, Yongbao Zheng, Siwen Song, Zeyao Zhang, Yao Bian","doi":"10.1007/s00425-024-04514-y","DOIUrl":"10.1007/s00425-024-04514-y","url":null,"abstract":"<p><strong>Main conclusion: </strong>Allotetraploid wheat reflects evolutionary divergence and domestication convergence in the karyotypic and phenotypic evolution, accompanied with the transformation from r- strategy to K- strategy in reproductive fitness. Allotetraploid wheat, the progenitor of hexaploidy bread wheat, has undergone 300,000 years of natural evolution and 10,000 years of domestication. The variations in karyotype and phenotype as well as fertility fitness have not been systematically linked. Here, by combining fluorescent in situ hybridization with the quantification of phenotypic and reproductive traits, we compared the karyotype, vegetative growth phenotype and reproductive fitness among synthesized, wild and domesticated accessions of allotetraploid wheat. We detected that the wild accessions showed dramatically high frequencies of homologous recombination and copy number variations of simple sequence repeats (SSR) comparing with synthetic and domesticated accessions. The phenotypic traits reflected significant differences among the populations shaped by distinct evolutionary processes. The diversity observed in wild accessions was significantly greater than that in domesticated ones, particularly in traits associated with vegetative growth and spike morphology. We found that the active pollen of domesticated accessions exhibited greater potential of germination, despite a lower rate of active pollen compared with the wild accessions, indicating a transformation in reproductive fitness strategy for pollen development in domesticated accessions compared to the wild accessions, from r-strategy to K-strategy. Our results demonstrate the condensation of karyotype and phenotype from natural wild accessions to domesticated accessions in allotetraploid wheats. Ecological strategy transformation should be seriously considered from evolution to domestication in polyploid plants, especially crops, which may provide a perspective on the adaptive evolution of polyploid plants.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 4","pages":"83"},"PeriodicalIF":3.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-08-28DOI: 10.1007/s00425-024-04517-9
Latif A Peer, Mohd Y Bhat, Ajaz A Lone, Zahoor A Dar, Bilal A Mir
{"title":"Genetic, molecular and physiological crosstalk during drought tolerance in maize (Zea mays): pathways to resilient agriculture.","authors":"Latif A Peer, Mohd Y Bhat, Ajaz A Lone, Zahoor A Dar, Bilal A Mir","doi":"10.1007/s00425-024-04517-9","DOIUrl":"10.1007/s00425-024-04517-9","url":null,"abstract":"<p><strong>Main conclusion: </strong>This review comprehensively elucidates maize drought tolerance mechanisms, vital for global food security. It highlights genetic networks, key genes, CRISPR-Cas applications, and physiological responses, guiding resilient variety development. Maize, a globally significant crop, confronts the pervasive challenge of drought stress, impacting its growth and yield significantly. Drought, an important abiotic stress, triggers a spectrum of alterations encompassing maize's morphological, biochemical, and physiological dimensions. Unraveling and understanding these mechanisms assumes paramount importance for ensuring global food security. Approaches like developing drought-tolerant varieties and harnessing genomic and molecular applications emerge as effective measures to mitigate the negative effects of drought. The multifaceted nature of drought tolerance in maize has been unfolded through complex genetic networks. Additionally, quantitative trait loci mapping and genome-wide association studies pinpoint key genes associated with drought tolerance, influencing morphophysiological traits and yield. Furthermore, transcription factors like ZmHsf28, ZmNAC20, and ZmNF-YA1 play pivotal roles in drought response through hormone signaling, stomatal regulation, and gene expression. Genes, such as ZmSAG39, ZmRAFS, and ZmBSK1, have been reported to be pivotal in enhancing drought tolerance through diverse mechanisms. Integration of CRISPR-Cas9 technology, targeting genes like gl2 and ZmHDT103, emerges as crucial for precise genetic enhancement, highlighting its role in safeguarding global food security amid pervasive drought challenges. Thus, decoding the genetic and molecular underpinnings of drought tolerance in maize sheds light on its resilience and paves the way for cultivating robust and climate-smart varieties, thus safeguarding global food security amid climate challenges. This comprehensive review covers quantitative trait loci mapping, genome-wide association studies, key genes and functions, CRISPR-Cas applications, transcription factors, physiological responses, signaling pathways, offering a nuanced understanding of intricate mechanisms involved in maize drought tolerance.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 4","pages":"81"},"PeriodicalIF":3.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-08-27DOI: 10.1007/s00425-024-04515-x
Javid Ahmad Mir, Arvind Kumar Yadav, Deepika Singh, Nasheeman Ashraf
{"title":"A novel mutation in non-constitutive lycopene beta cyclase (CstLcyB2a) from Crocus sativus modulates carotenoid/apocarotenoid content, biomass and stress tolerance in plants.","authors":"Javid Ahmad Mir, Arvind Kumar Yadav, Deepika Singh, Nasheeman Ashraf","doi":"10.1007/s00425-024-04515-x","DOIUrl":"10.1007/s00425-024-04515-x","url":null,"abstract":"<p><strong>Main conclusion: </strong>Mutation at A<sup>126</sup> in lycopene-β-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene without affecting lycopene binding, thereby diverting metabolic flux towards β-carotene and apocarotenoid biosynthesis. Crocus sativus, commonly known as saffron, has emerged as an important crop for research because of its ability to synthesize unique apocarotenoids such as crocin, picrocrocin and safranal. Metabolic engineering of the carotenoid pathway can prove a beneficial strategy for enhancing the quality of saffron and making it resilient to changing climatic conditions. Here, we demonstrate that introducing a novel mutation at A<sup>126</sup> in stigma-specific lycopene-β-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene, but does not affect lycopene binding, thereby diverting metabolic flux towards β-carotene formation. Thus, A126L-CstLcyB2a expression in lycopene-accumulating bacterial strains resulted in enhanced production of β-carotene. Transient expression of A126L-CstLcyB2a in C. sativus stigmas enhanced biosynthesis of crocin. Its stable expression in Nicotiana tabacum enhanced β-branch carotenoids and phyto-hormones such as abscisic acid (ABA) and gibberellic acids (GA's). N. tabacum transgenic lines showed better growth performance and photosynthetic parameters including maximum quantum efficiency (Fv/Fm) and light-saturated capacity of linear electron transport. Exogenous application of hormones and their inhibitors demonstrated that a higher ratio of GA<sub>4</sub>/ABA has positive effects on biomass of wild-type and transgenic plants. Thus, these findings provide a platform for the development of new-generation crops with improved productivity, quality and stress tolerance.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 4","pages":"80"},"PeriodicalIF":3.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-08-25DOI: 10.1007/s00425-024-04510-2
Ho Manh Tuong, Sonia García Méndez, Michiel Vandecasteele, Anne Willems, Anelia Iancheva, Pham Bich Ngoc, Do Tien Phat, Chu Hoang Ha, Sofie Goormachtig
{"title":"A novel Microbacterium strain SRS2 promotes the growth of Arabidopsis and MicroTom (S. lycopersicum) under normal and salt stress conditions.","authors":"Ho Manh Tuong, Sonia García Méndez, Michiel Vandecasteele, Anne Willems, Anelia Iancheva, Pham Bich Ngoc, Do Tien Phat, Chu Hoang Ha, Sofie Goormachtig","doi":"10.1007/s00425-024-04510-2","DOIUrl":"10.1007/s00425-024-04510-2","url":null,"abstract":"<p><strong>Main conclusion: </strong>Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 4","pages":"79"},"PeriodicalIF":3.6,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}