Planta最新文献

筛选
英文 中文
Biotechnological approaches to reduce the phytic acid content in millets to improve nutritional quality 降低黍米中植酸含量以提高营养质量的生物技术方法
IF 4.3 3区 生物学
Planta Pub Date : 2024-09-19 DOI: 10.1007/s00425-024-04525-9
Bhuvnesh Sareen, Ramesh Namdeo Pudake, Amitha Mithra Sevanthi, Amolkumar U. Solanke
{"title":"Biotechnological approaches to reduce the phytic acid content in millets to improve nutritional quality","authors":"Bhuvnesh Sareen, Ramesh Namdeo Pudake, Amitha Mithra Sevanthi, Amolkumar U. Solanke","doi":"10.1007/s00425-024-04525-9","DOIUrl":"https://doi.org/10.1007/s00425-024-04525-9","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main conclusion</h3><p>The review article summarizes the approaches and potential targets to address the challenges of anti-nutrient like phytic acid in millet grains for nutritional improvement.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Millets are a diverse group of minor cereal grains that are agriculturally important, nutritionally rich, and the oldest cereals in the human diet. The grains are important for protein, vitamins, macro and micronutrients, fibre, and energy sources. Despite a high amount of nutrients, millet grains also contain anti-nutrients that limit the proper utilization of nutrients and finally affect their dietary quality. Our study aims to outline the genomic information to identify the target areas of research for the exploration of candidate genes for nutritional importance and show the possibilities to address the presence of anti-nutrient (phytic acid) in millets. So, the physicochemical accessibility of micronutrients increases and the agronomic traits can do better. Several strategies have been adopted to minimize the phytic acid, a predominant anti-nutrient in cereal grains. In the present review, we highlight the potential of biotechnological tools and genome editing approaches to address phytic acid in millets. It also highlights the biosynthetic pathway of phytic acid and potential targets for knockout or silencing to achieve low phytic acid content in millets.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the evolutionary development of the “Chinese lantern” within Solanaceae
IF 4.3 3区 生物学
Planta Pub Date : 2024-09-18 DOI: 10.1007/s00425-024-04535-7
Lanfeng Wu, Qianqian Liu, Wei Gou, Jun Li, Qianhui Cao, Chaoying He
{"title":"Deciphering the evolutionary development of the “Chinese lantern” within Solanaceae","authors":"Lanfeng Wu, Qianqian Liu, Wei Gou, Jun Li, Qianhui Cao, Chaoying He","doi":"10.1007/s00425-024-04535-7","DOIUrl":"https://doi.org/10.1007/s00425-024-04535-7","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main conclusion</h3><p>The key genetic variation underlying the evo-devo of ICS in Solanaceae may be further pinpointed using an integrated strategy of forward and reverse genetics studies under the framework of phylogeny.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The calyx of <i>Physalis</i> remains persistent throughout fruit development. Post-flowering, the fruiting calyx is inflated rapidly to encapsulate the berry, giving rise to a “Chinese lantern” structure called inflated calyx syndrome (ICS). It is unclear how this novelty arises. Over the past 2 decades, the role of MADS-box genes in the evolutionary development (evo-devo) of ICS has mainly been investigated within Solanaceae. In this review, we analyze the main achievements, challenges, and new progress. ICS acts as a source for fruit development, provides a microenvironment to protect fruit development, and assists in long-distance fruit dispersal. ICS is a typical post-floral trait, and the onset of its development is triggered by specific developmental signals that coincide with fertilization. These signals can be replaced by exogenous gibberellin and cytokinin application. <i>MPF2-like</i> heterotopic expression and <i>MBP21-like</i> loss have been proposed to be two essential evolutionary events for ICS origin, and manipulating the related MADS-box genes has been shown to affect the ICS size, sepal organ identity, and/or male fertility, but not completely disrupt ICS. Therefore, the core genes or key links in the ICS biosynthesis pathways may have undergone secondary mutations during evolution, or they have not yet been pinpointed. Recently, we have made some encouraging progress in acquiring lantern mutants in <i>Physalis floridana</i>. In addition to technological innovation, we propose an integrated strategy to further analyze the evo-devo mechanisms of ICS in Solanaceae using forward and reverse genetics studies under the framework of phylogeny.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dominant white color trait of the melon fruit rind is associated with epicuticular wax accumulation
IF 4.3 3区 生物学
Planta Pub Date : 2024-09-15 DOI: 10.1007/s00425-024-04527-7
Ran Ezer, Ekaterina Manasherova, Amit Gur, Arthur A. Schaffer, Yaakov Tadmor, Hagai Cohen
{"title":"The dominant white color trait of the melon fruit rind is associated with epicuticular wax accumulation","authors":"Ran Ezer, Ekaterina Manasherova, Amit Gur, Arthur A. Schaffer, Yaakov Tadmor, Hagai Cohen","doi":"10.1007/s00425-024-04527-7","DOIUrl":"https://doi.org/10.1007/s00425-024-04527-7","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main Conclusion</h3><p>Microscopic analyses and chemical profiling demonstrate that the white rind phenotype in melon fruit is associated with the accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Serving as an indicator of quality, the rind (or external) color of fruit directly affects consumer choice. A fruit’s color is influenced by factors such as the levels of pigments and deposited epicuticular waxes. The latter produces a white-grayish coating often referred to as “wax bloom”. Previous reports have suggested that some melon (<i>Cucumis melo</i> L.) accessions may produce wax blooms, where a dominant white rind color trait was genetically mapped to a major locus on chromosome 7 and suggested to be inherited as a single gene named <i>Wi</i>. We here provide the first direct evidence of the contribution of epicuticular waxes to the dominant white rind trait in melon fruit. Our light and electron microscopy and gas chromatography-mass spectrometry (GC–MS) comparative analysis of melon accessions with white or green rinds reveals that the rind of melon fruit is rich in epicuticular waxes. These waxes are composed of various biochemical classes, including fatty acids, fatty alcohols, aldehydes, fatty amides, <i>n</i>-alkanes, tocopherols, triterpenoids, and wax esters. We show that the dominant white rind phenotype in melon fruit is associated with increased accumulation of <i>n</i>-alkanes, fatty alcohols, aldehydes and wax esters, which are linked with the deposition of crystal-like wax platelets on their surfaces. Together, this study broadens the understanding of natural variation in an important quality trait of melon fruit and promotes the future identification of the causative gene for the dominant white rind trait.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of calcium ions and cell wall deposition on the pollen viability of Paeonia lactiflora after cryopreservation 钙离子和细胞壁沉积对冷冻保存后牡丹花粉活力的影响
IF 4.3 3区 生物学
Planta Pub Date : 2024-09-15 DOI: 10.1007/s00425-024-04530-y
Shangqian Liu, Mengting Zhu, Wenjie Ma, Yingling Wan, Yan Liu
{"title":"Effects of calcium ions and cell wall deposition on the pollen viability of Paeonia lactiflora after cryopreservation","authors":"Shangqian Liu, Mengting Zhu, Wenjie Ma, Yingling Wan, Yan Liu","doi":"10.1007/s00425-024-04530-y","DOIUrl":"https://doi.org/10.1007/s00425-024-04530-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main conclusion</h3><p>Four cultivars of <i>Paeonia lactiflora</i> pollen have a different viability after cryopreservation, and that the difference of pollen viability is related to calcium ions and cell wall deposition.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Cryopreservation is a vital technique for preserving germplasm resources, offering extensive application prospects. Understanding the factors influencing pollen viability after cryopreservation is crucial for the permanent preservation and exchange of pollen resources. This study investigated pollen from four <i>Paeonia lactiflora</i> cultivars with varying viability after cryopreservation, aiming to determine whether calcium ions (Ca<sup>2+</sup>) and cell wall deposition affect these viability changes. The results showed that Ca<sup>2+</sup>-ATPase activity and cytoplasmic Ca<sup>2+</sup> of all four cultivars exhibited an increasing trend after cryopreservation; the calmodulin (CaM) content varied with cultivars. Correlation analysis showed that fresh pollen viability was significantly negatively correlated with cytoplasmic Ca<sup>2+</sup> content and positively correlated with Ca<sup>2+</sup>-ATPase activity, while pollen viability after cryopreservation exhibited a significantly negative correlation with cytoplasmic Ca<sup>2+</sup> content and a positive correlation with CaM content. The pollen cell wall of the cultivar ‘Zi Feng Chao Yang’ (ZFCY), which showed increased viability after cryopreservation, contained significantly higher levels of low-temperature tolerance-related phospholipids and proteins compared to other cultivars. Additionally, all cultivars maintained a clear Ca<sup>2+</sup> gradient at the tips of pollen tubes after cryopreservation, without significant callose accumulation. These findings suggest that differences in Ca<sup>2+</sup> signaling and cell wall components deposition influence changes in pollen viability after cryopreservation, and the Ca<sup>2+</sup> gradient and callose at the tip of pollen tubes are not responsible for preventing pollen tube growth.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-type specific localization and biological activity of the volatiles from the endemic species Chaerophyllum coloratum L. 地方物种Chaerophyllum coloratum L.挥发性物质的细胞特异性定位和生物活性
IF 4.3 3区 生物学
Planta Pub Date : 2024-09-13 DOI: 10.1007/s00425-024-04531-x
Elma Vuko, Sanja Radman, Ivana Bočina, Juraj Kamenjarin, Ivana Bezmalinović, Željana Fredotović
{"title":"Cell-type specific localization and biological activity of the volatiles from the endemic species Chaerophyllum coloratum L.","authors":"Elma Vuko, Sanja Radman, Ivana Bočina, Juraj Kamenjarin, Ivana Bezmalinović, Željana Fredotović","doi":"10.1007/s00425-024-04531-x","DOIUrl":"https://doi.org/10.1007/s00425-024-04531-x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main conclusion</h3><p>New findings are presented for <i>Chaerophyllum coloratum</i> L. on the volatile composition of the essential oil, based on data of hydrosol and fresh plant material, light and electron microscopy of leaves, and cytotoxic and antiviral activity.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The widespread Apiaceae family includes many well-known and economically important plants that are cultivated as food or spices. Many produce essential oils and are generally a source of secondary metabolites and compounds that have numerous applications in daily life. In this study, the chemical composition of volatile organic compounds (VOCs), ultrastructure and biological activity of the Mediterranean endemic species <i>Cheaerophyllum coloratum</i> L. are investigated, as literature data for this plant species are generally very scarce. The essential oil and hydrosol were extracted from the air-dried leaves by hydrodistillation and the chemical composition of both extracts was analysed by GC–MS in conjunction with headspace solid-phase microextraction (HS-SPME) of VOCs from the hydrosol and the fresh plant material. In the composition of the essential oil, the oxygenated sesquiterpenes spathulenol and caryophyllene oxide were the most abundant components. In the fresh plant material, non-oxygenated sesquiterpenes dominated, with β-caryophyllene and germacrene D being the main components. The hydrosol was dominated by monoterpenes, with the oxygenated monoterpene <i>p</i>-cymen-8-ol being the most abundant. Light and electron micrographs of the leaf of <i>C. coloratum</i> show secretory structures, and we hypothesize that glandular leaf trichomes, secretory epidermal cells and secretory canals are involved in the production of volatiles and their secretion on the leaf surface. Since the biological potential of <i>C. coloratum</i> is poorly investigated, we tested its cytotoxic activity on cancer and healthy cell lines and its antiviral activity on plants infected with tobacco mosiac virus (TMV). Our results dealing with the composition, ultrastructure and biological activity show that <i>C. coloratum</i> represent a hidden valuable plant species with a potential for future research.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-control of soil-borne virus infection by seed application of Glycyrrhiza glabra extract and the rhamnolipid Rhapynal 通过种子施用甘草提取物和鼠李糖脂Rhapynal对土传病毒感染进行生物防治
IF 4.3 3区 生物学
Planta Pub Date : 2024-09-13 DOI: 10.1007/s00425-024-04529-5
Viktoria Fomitcheva, Claudia J. Strauch, Sabine Bonse, Petra Bauer, Thomas Kühne, Annette Niehl
{"title":"Bio-control of soil-borne virus infection by seed application of Glycyrrhiza glabra extract and the rhamnolipid Rhapynal","authors":"Viktoria Fomitcheva, Claudia J. Strauch, Sabine Bonse, Petra Bauer, Thomas Kühne, Annette Niehl","doi":"10.1007/s00425-024-04529-5","DOIUrl":"https://doi.org/10.1007/s00425-024-04529-5","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main conclusion</h3><p>Seed-application of the natural products protects sugar beet and wheat plants against infection with plasmodiophorid-transmitted viruses and thus may represent an efficient, environmentally friendly, easy and cost effective biocontrol strategy.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In times of intensive agriculture, resource shortening and climate change, alternative, more sustainable and eco-friendly plant protection strategies are required. Here, we tested the potential of the natural plant substances <i>Glycyrrhiza glabra</i> leaf extract (GE) and the rhamnolipid Rhapynal (Rha) applied to seeds to protect against infection of sugar beet and wheat with soil-borne plant viruses. The soil-borne <i>Polymyxa betae-</i> and <i>Polymyxa graminis</i>-transmitted viruses cause extensive crop losses in agriculture and efficient control strategies are missing. We show that GE and Rha both efficiently protect plants against infection with soil-borne viruses in sugar beet and wheat when applied to seeds. Moreover, the antiviral protection effect is independent of the cultivar used. No protection against <i>Polymyxa sp.</i> was observed after seed treatment with the bio-substances at our analysis time points<i>.</i> However, when we applied the bio-substances directly to soil a significant anti-<i>Polymyxa graminis</i> effect was obtained in roots of barley plants grown in the soil as well as in the treated soil. Despite germination can be affected by high concentrations of the substances, a range of antiviral protection conditions with no effect on germination were identified. Seed-treatment with the bio-substances did not negatively affect plant growth and development in virus-containing soil, but was rather beneficial for plant growth. We conclude that seed treatment with GE and Rha may represent an efficient, ecologically friendly, non-toxic, easy to apply and cost efficient biocontrol measure against soil-borne virus infection in plants.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in understanding the roles of plant HAT and HDAC in non-histone protein acetylation and deacetylation 在理解植物 HAT 和 HDAC 在非组蛋白乙酰化和去乙酰化中的作用方面取得的进展
IF 4.3 3区 生物学
Planta Pub Date : 2024-09-12 DOI: 10.1007/s00425-024-04518-8
Zihan Zhang, Yan Zeng, Jiaqi Hou, Lijia Li
{"title":"Advances in understanding the roles of plant HAT and HDAC in non-histone protein acetylation and deacetylation","authors":"Zihan Zhang, Yan Zeng, Jiaqi Hou, Lijia Li","doi":"10.1007/s00425-024-04518-8","DOIUrl":"https://doi.org/10.1007/s00425-024-04518-8","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main conclusion</h3><p>This review focuses on HATs and HDACs that modify non-histone proteins, summarizes functional mechanisms of non-histone acetylation as well as the roles of HATs and HDACs in rice and Arabidopsis.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The growth and development of plants, as well as their responses to biotic and abiotic stresses, are governed by intricate gene and protein regulatory networks, in which epigenetic modifying enzymes play a crucial role. Histone lysine acetylation levels, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), are well-studied in the realm of transcriptional regulation. However, the advent of advanced proteomics has unveiled that non-histone proteins also undergo acetylation, with its underlying mechanisms now being clarified. Indeed, non-histone acetylation influences protein functionality through diverse pathways, such as modulating protein stability, adjusting enzymatic activity, steering subcellular localization, influencing interactions with other post-translational modifications, and managing protein–protein and protein–DNA interactions. This review delves into the recent insights into the functional mechanisms of non-histone acetylation in plants. We also provide a summary of the roles of HATs and HDACs in rice and Arabidopsis, and explore their potential involvement in the regulation of non-histone proteins.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential salt stress resistance in male and female Salix linearistipularis plants: insights from transcriptome profiling and the identification of the 4-hydroxy-tetrahydrodipicolinate synthase gene 雌雄沙柳植物的抗盐胁迫能力差异:转录组图谱分析和 4-羟基-四氢二苯二酚合成酶基因鉴定的启示
IF 4.3 3区 生物学
Planta Pub Date : 2024-09-11 DOI: 10.1007/s00425-024-04528-6
Delong Fan, Weichao Fu, Lixin Li, Shenkui Liu, Yuanyuan Bu
{"title":"Differential salt stress resistance in male and female Salix linearistipularis plants: insights from transcriptome profiling and the identification of the 4-hydroxy-tetrahydrodipicolinate synthase gene","authors":"Delong Fan, Weichao Fu, Lixin Li, Shenkui Liu, Yuanyuan Bu","doi":"10.1007/s00425-024-04528-6","DOIUrl":"https://doi.org/10.1007/s00425-024-04528-6","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main conclusion</h3><p>Lysine plays an essential role in the growth differences between male and female <i>S. linearistipularis</i> plants under salt stress. Furthermore, <i>SlDHDPS</i> is identified as a vital gene contributing to the differences in saline-alkali tolerance between male and female plants of <i>S. linearistipularis</i>.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Soil salinization is a significant problem that severely restricts agricultural production worldwide. High salinity and low nutrient concentrations consequently prevent the growth of most plant species. <i>Salix linearistipularis</i> is the only woody plant (shrub) naturally distributed in the saline-alkali lands of the Songnen Plain in Northeast China, and it is one of the few plants capable of thriving in soils with extremely high salt and alkaline pH (&gt;9.0) levels. However, insufficient attention has been given to the interplay between salt and nitrogen in the growth and development of <i>S. linearistipularis</i>. Here, the male and female plants of <i>S. linearistipularis</i> were subjected to salt stress with nitrogen-starvation or nitrogen-supplement treatments, and it was found that nitrogen significantly affects the difference in salt tolerance between male and female plants, with nitrogen-starvation significantly enhancing the salt stress tolerance of female plants compared to male plants. Transcriptional analyses showed 66 differentially expressed nitrogen-responsive genes in female and male roots, with most of them showing sexual differences in expression patterns under salinity stress. RNA-seq and RT-qPCR analysis demonstrated that six genes had an opposite salt-induced expression pattern in female and male roots. The expression of the 4-hydroxy-tetrahydrodipicolinate synthase encoding gene (<i>SlDHDPS</i>) in female roots was higher than that in male roots. Further treatment with exogenous lysine could significantly alleviate the inhibitory effect of salt stress on the growth of female and male plants. These results indicate that the <i>SlDHDPS</i> in the nitrogen metabolism pathway is involved in the resistance of <i>S. linearistipularis</i> to salt stress, which lays a foundation for further exploring the mechanism of nitrogen on salt tolerance of <i>S. linearistipularis</i>, and has a significant reference value for saline-alkali land management and sustainable agricultural development.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense 水稻新病原体 Ustilaginoidea virens:病原体毒力策略与宿主防御之间的动态相互作用
IF 4.3 3区 生物学
Planta Pub Date : 2024-09-11 DOI: 10.1007/s00425-024-04523-x
Sunil Kumar Sunani, Prasanna S. Koti, N. C. Sunitha, Manoj Choudhary, B. Jeevan, C. Anilkumar, S. Raghu, Basana Gowda Gadratagi, Manas Kumar Bag, Licon Kumar Acharya, Dama Ram, Bishnu Maya Bashyal, Shyamaranjan Das Mohapatra
{"title":"Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense","authors":"Sunil Kumar Sunani, Prasanna S. Koti, N. C. Sunitha, Manoj Choudhary, B. Jeevan, C. Anilkumar, S. Raghu, Basana Gowda Gadratagi, Manas Kumar Bag, Licon Kumar Acharya, Dama Ram, Bishnu Maya Bashyal, Shyamaranjan Das Mohapatra","doi":"10.1007/s00425-024-04523-x","DOIUrl":"https://doi.org/10.1007/s00425-024-04523-x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main Conclusion</h3><p>The <i>Ustilaginoidea virens</i> –rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between <i>U. virens</i> and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The Rice False Smut (RFS) caused by the fungus <i>Ustilaginoidea virens</i> currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. <i>U. virens</i> can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of <i>U. virens</i>, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in <i>U. virens</i>–rice pathosystem research while identifying opportunities for future investigations.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide identification of oxidosqualene cyclase genes regulating natural rubber in Taraxacum kok-saghyz 在全基因组范围内鉴定调控蒲公英天然橡胶的氧化角鲨烯环化酶基因
IF 4.3 3区 生物学
Planta Pub Date : 2024-09-10 DOI: 10.1007/s00425-024-04522-y
Yongfei Wang, Zhanchao Yang, Boxuan Yuan, Lixia He, Yunyi Han, Juanying Wang, Xuchu Wang
{"title":"Genome-wide identification of oxidosqualene cyclase genes regulating natural rubber in Taraxacum kok-saghyz","authors":"Yongfei Wang, Zhanchao Yang, Boxuan Yuan, Lixia He, Yunyi Han, Juanying Wang, Xuchu Wang","doi":"10.1007/s00425-024-04522-y","DOIUrl":"https://doi.org/10.1007/s00425-024-04522-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\u0000<b><i>Main conclusion</i></b>\u0000</h3><p><b>Nine</b> <b><i>TkOSC</i></b> <b>genes have been identified by genome-wide screening. Among them,</b> <b><i>TkOSC4-6</i></b> <b>might be more crucial for natural rubber biosynthesis in</b> <b><i>Taraxacum kok-saghyz</i></b> <b>roots.</b></p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p><i>Taraxacum kok-saghyz</i> Rodin (TKS) roots contain large amounts of natural rubber, inulin, and valuable metabolites. Oxidosqualene cyclase (OSC) is a key member for regulating natural rubber biosynthesis (NRB) via the triterpenoid biosynthesis pathway. To explore the functions of OSC on natural rubber producing in TKS, its gene family members were identified in TKS genome via genome-wide screening. Nine <i>TkOSCs</i> were identified, which were mainly distributed in the cytoplasm. Their family genes experienced a neutral selection during the evolution process. Overall sequence homology analysis OSC proteins revealed 80.23% similarity, indicating a highly degree of conservation. Pairwise comparisons showed a multiple sequence similarity ranging from 57% to 100%. Protein interaction prediction revealed that TkOSCs may interact with baruol synthase, sterol 1,4-demethylase, lupeol synthase and squalene epoxidase. Phylogenetic analysis showed that OSC family proteins belong to two branches. <i>TkOSC</i> promoter regions contain <i>cis-</i>acting elements related to plant growth, stress response, hormones response and light response. Protein accumulation analysis demonstrated that TkOSC4, TkOSC5 and TkOSC6 proteins had strong expression levels in the root, latex and plumular axis. Comparison of gene expression patterns showed <i>TkOSC1</i>, <i>TkOSC4</i>, <i>TkOSC5</i>, <i>TkOSC6</i>, <i>TkOSC7</i>, <i>TkOSC8</i> and <i>TkOSC9</i> might be important in regulating NRB. Combination of gene and protein results revealed TkOSC4-6 might be more crucial, and the data might contribute to a more profound understanding of the roles of OSCs for NRB in TKS roots.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信