PlantaPub Date : 2024-10-22DOI: 10.1007/s00425-024-04554-4
Wei Wang, Yue Wang, Liping Luo, Jiaying Kou, Lulu Zhang, Chen Yang, Ning Yang
{"title":"Development and drought escape response in Arabidopsis thaliana are regulated by AtPLC1 in response to abscisic acid.","authors":"Wei Wang, Yue Wang, Liping Luo, Jiaying Kou, Lulu Zhang, Chen Yang, Ning Yang","doi":"10.1007/s00425-024-04554-4","DOIUrl":"10.1007/s00425-024-04554-4","url":null,"abstract":"<p><strong>Main conclusion: </strong>AtPLC1 plays a critical role in plant growth, development, and response to drought stress. Phosphoinositide-specific phospholipase C (PI-PLC) hydrolyzes substrates to generate secondary messengers crucial for plant growth, development, and stress responses. Drought escape (DE) response is an adaptive strategy that plants employ under drought conditions. The expression levels of the flower meristem-specific gene APETALA 1 and flowering regulatory genes FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 were downregulated in plc1, and FLOWERING LOCUS C was upregulated. The flowering time of the plc1flc double mutant was earlier than that of the wild type. Transcriptome analysis revealed that the Gene Ontology of differentially expressed genes (DEGs) was enriched in abscisic acid (ABA) response signaling, and Kyoto Encyclopedia of Genes and Genomes analysis revealed differential gene expression annotated to plant hormone signaling pathways. Our experiments show that AtPLC1 is upregulated by ABA in Arabidopsis. Under ABA induction and water stress, wild-type plants exhibit a DE response, and the DE response in plc1 disappears. Expression levels of ABA signaling pathway transcription factors ABA-responsive element-binding factors 3 (ABF3) and ABF4 were downregulated in plc1. In conclusion, our study suggests that AtPLC1 participates in regulating plant growth and development and participates in the DE response through the regulation of ABA signaling pathway transcription factors ABF3/ABF4. The study enhances our comprehension of the role of AtPLC1 in plant development and drought stress, providing a theoretical foundation for further investigation into DE responses.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 6","pages":"121"},"PeriodicalIF":3.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-10-22DOI: 10.1007/s00425-024-04557-1
Niti Yashvardhini, Saurav Bhattacharya, Shubho Chaudhuri, Dibyendu Narayan Sengupta
{"title":"Retraction Note to: Molecular characterization of the 14‑3‑3 gene family in rice and its expression studies under abiotic stress.","authors":"Niti Yashvardhini, Saurav Bhattacharya, Shubho Chaudhuri, Dibyendu Narayan Sengupta","doi":"10.1007/s00425-024-04557-1","DOIUrl":"10.1007/s00425-024-04557-1","url":null,"abstract":"","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 6","pages":"120"},"PeriodicalIF":3.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Histochemical and molecular analyses reveal an insight into the scent volatiles synthesis and emission in ephemeral flowers of Murraya paniculata (L.) Jack.","authors":"Sinjini Datta, Shobhon Paul, Lopamudra Ballabh, Adinpunya Mitra","doi":"10.1007/s00425-024-04552-6","DOIUrl":"10.1007/s00425-024-04552-6","url":null,"abstract":"<p><strong>Main conclusion: </strong>Temporal histolocalization of floral volatiles in the petal epidermis of Murraya paniculata was found to be linked with the coordinated expression of candidate genes and successive accumulation of an internal pool of volatiles. Murraya paniculata (Rutaceae) is known for its highly fragrant ephemeral flowers that emit volatiles to attract nocturnal pollinators. To unfold the patterns of volatile emission in relation to floral life-span, we studied time-course accumulation and emission rate of scent volatiles at six timepoints of floral maturation, at an interval of 4 h starting from the bud stage to the senescence stage on the next day. This study revealed the maximum emission rate of scent volatiles at the anthesis stage at 18:00 h. This finding correlates well with the maximum accumulation of volatiles in the internal pool of the flowers at this stage. The key volatiles detected in both emitted and internal pools were benzaldehyde, benzeneacetaldehyde, linalool, caryophyllene, germacrene-D and α-farnesene. In addition, the internal pool also contained substantial amounts of indole, scopoletin, caffeine and osthole. To histochemically localize the temporal accumulation of major volatile groups in the epidermal cells, petal cross sections were stained with NaDi and ferric chloride to visualize terpenes and phenolics, respectively, under light microscope. Histolocalization studies showed a higher accumulation of terpenes at 14:00 h and 18:00 h, which subsequently was reduced as senescence approached. Significant phenolics in the abaxial and adaxial layers of the petal epidermis accumulated at 18:00 h and at the early senescence (06:00 h) stages. Furthermore, temporal localization of active shikimate dehydrogenase (SKDH) protein through in-gel activity assay demonstrated higher enzymatic activities at anthesis (18:00 h) and fully bloomed (02:00 h) stages, supporting the findings of higher accumulation of phenolic volatiles at 18:00 h and 06:00 h stages. Expression analysis of major candidate genes of floral scent volatiles pathway supported the hypothesis that the emission rate of floral fragrance reached its maximum at the anthesis (18:00 h) stage. In contrast, biosynthesis of scent compounds started at the bud (14:00 h) stage itself as indicated by the RT-PCR semi-quantitative estimation. As flowers of M. paniculata attract multiple pollinator species, this study could also serve as a springboard for pollination biology in Rutaceae, which includes important fruit crops.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 5","pages":"119"},"PeriodicalIF":3.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-10-17DOI: 10.1007/s00425-024-04544-6
Izhar Ullah, Muhammad Danish Toor, Bayram Ali Yerlikaya, Heba I Mohamed, Seher Yerlikaya, Abdul Basit, Attiq Ur Rehman
{"title":"High-temperature stress in strawberry: understanding physiological, biochemical and molecular responses.","authors":"Izhar Ullah, Muhammad Danish Toor, Bayram Ali Yerlikaya, Heba I Mohamed, Seher Yerlikaya, Abdul Basit, Attiq Ur Rehman","doi":"10.1007/s00425-024-04544-6","DOIUrl":"10.1007/s00425-024-04544-6","url":null,"abstract":"<p><strong>Main conclusion: </strong>Heat stress reduces strawberry growth and fruit quality by impairing photosynthesis, disrupting hormone regulation, and altering mineral nutrition. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic and metabolomic under high temperatures. Garden strawberry is a globally cultivated, economically important fruit crop highly susceptible to episodic heat waves and chronically rising temperatures associated with climate change. Heat stress negatively affects the growth, development, and quality of strawberries. Elevated temperatures affect photosynthesis, respiration, water balance, hormone signaling, and carbohydrate metabolism in strawberries. Heat stress reduces the size and number of leaves, the number of crowns, the differentiation of flower buds, and the viability of pollen and fruit set, ultimately leading to a lower yield. On a physiological level, heat stress reduces membrane stability, increases the production of reactive oxygen species, and reduces the antioxidant capacity of strawberries. Heat-tolerant varieties have better physiological and biochemical adaptation mechanisms compared to heat-sensitive varieties. Breeding heat-tolerant strawberry cultivars involves selection for traits such as increased leaf temperature, membrane thermostability, and chlorophyll content. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic, metabolomic, and ionomic reprogramming at high temperatures. Integrative-omics approaches combine multiple omics datasets to obtain a systemic understanding of the responses to heat stress in strawberries. This article summarizes the deciphering of strawberry responses to heat stress using physiological, biochemical, and molecular approaches that will enable the development of resilient adaptation strategies that sustain strawberry production under global climate change.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 5","pages":"118"},"PeriodicalIF":3.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome-wide analysis of Triticum aestivum bromodomain gene family and expression analysis under salt stress.","authors":"Yueduo Wang, Shenghai Shen, Zhaoming Wu, Weiqi Tao, Wei Zhang, Pei Yu","doi":"10.1007/s00425-024-04549-1","DOIUrl":"10.1007/s00425-024-04549-1","url":null,"abstract":"<p><strong>Main conclusion: </strong>This study identified 82 wheat BRD genes, revealing both conserved evolutionary and functional characteristics across plant species and novel features specific to wheat. GTE8-12 cluster TaBRDs were found as positive response to salt stress. Bromodomain-containing proteins (BRDs) are crucial in histone acetylation \"reading\" and chromatin remodeling in eukaryotes. Despite some of their members showing importance in various biological processes in plants, our understanding of the BRD family in wheat (Triticum aestivum) remains limited. This study comprehensively analyzes the T. aestivum BRD (TaBRD) family. We identified 82 TaBRD genes in wheat genome encoding hydrophobic proteins with a conserved pocket structure. Phylogenetic analysis classified these genes into 16 distinct clusters, with conserved protein motifs and gene structures within clusters but diverse patterns across clusters. Gene duplication analysis revealed that whole-genome or segmental duplication events were the primary expansion mechanism for the TaBRD family, with purifying selection acting on these genes. Subcellular localization and Gene Ontology (GO) analyses indicated that TaBRD proteins are predominantly nuclear-localized and involved in transcription regulation and RNA metabolism. Promoter analysis and interaction network prediction suggested diverse regulatory mechanisms for TaBRDs. Notably, TaBRDs from the GTE8-12 cluster were enriched with cis-elements responsive to abscisic acid (ABA), methyl jasmonate (MeJA), and light, implying their involvement in physiological functions and abiotic stress responses. Expression analysis confirmed tissue-specific patterns and responsiveness to salinity stress. This comprehensive study enhances our understanding of the BRD family in higher plants and provides a foundation for developing salt-tolerant wheat varieties.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 5","pages":"117"},"PeriodicalIF":3.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-10-14DOI: 10.1007/s00425-024-04547-3
Uma Kanta Chowra, Preetom Regon, Yuriko Kobayashi, Hiroyuki Koyama, Sanjib Kumar Panda
{"title":"Characterization of Al<sup>3+</sup>-toxicity responses and molecular mechanisms underlying organic acid efflux in Vigna mungo (L.) Hepper.","authors":"Uma Kanta Chowra, Preetom Regon, Yuriko Kobayashi, Hiroyuki Koyama, Sanjib Kumar Panda","doi":"10.1007/s00425-024-04547-3","DOIUrl":"10.1007/s00425-024-04547-3","url":null,"abstract":"<p><p>Aluminium (Al<sup>3+</sup>) toxicity in acidic soils poses a significant challenge for crop cultivation and reduces crop productivity. The primary defense mechanism against Al<sup>3+</sup> toxicity involves the activation of organic acid secretion. In this study, responses of 9 Vigna mungo cultivars to Al<sup>3+</sup> toxicity were investigated, with a particular emphasis on the root system and crucial genes involved in Al<sup>3+</sup> tolerance using molecular cloning and expression analysis. Sensitive blackgram-KM2 cultivars exposed to 100-µM Al<sup>3+</sup> toxicity for 72 h exhibited a root-growth inhibition of approximately 66.17%. Significant loss of membrane integrity and structural deformative roots were found to be the primary symptoms of Al<sup>3+</sup> toxicity in blackgram. MATE (Multidrug and Toxic Compound Extrusion) and ALS3 (Aluminium Sensitive 3) genes were successfully cloned from a sensitive blackgram cv KM2 with phylogenetic analysis revealing their evolutionary relationship to Vigna radiata and Glycine max. The MATE gene is mainly localized in the plasma membrane, and highly expressed under Al<sup>3+</sup>, thus suggesting its role in transports of citrate-Al<sup>3+</sup> complexes, and detoxifying Al<sup>3+</sup> within plant cells. In addition, ALS3 was also induced under Al<sup>3+</sup> toxicity, which codes the UDP-glucose transporter and is required for the maintenance of ions homeostasis. In summary, this study highlights the understanding of Al<sup>3+</sup> toxicity and underlying molecular mechanisms linked to the efflux of organic acid in blackgram, ultimately aiding the framework for the development of strategies to enhance the resilience of blackgram and other pulse crops in Al-rich soils.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 5","pages":"116"},"PeriodicalIF":3.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BEACH domain-containing protein SPIRRIG facilitates microtubule cytoskeleton-associated trichome morphogenesis in Arabidopsis.","authors":"Linyu Niu, Wenjuan Xie, Qian Li, Yali Wang, Xuanyu Zhang, Muyang Shi, Jingyu Zeng, Mengxiang Li, Yanling Wang, Jingxia Shao, Fei Yu, Lijun An","doi":"10.1007/s00425-024-04545-5","DOIUrl":"10.1007/s00425-024-04545-5","url":null,"abstract":"<p><strong>Main conclusion: </strong>Our studies reveal the involvement of SPI in cytoskeleton-associated trichome morphogenesis, expanding the roles of SPI in regulating plant epidermal cell development. Acquisition of distinct shapes is crucial for cells to perform their biological functions in multicellular organisms. Trichomes are specialized epidermal cells of plant aerial parts, offering an excellent paradigm for dissecting the underlying regulatory mechanism of plant cell shape development at the single-cell level. SPIRRIG (SPI) that encodes a BEACH domain-containing protein was initially identified to regulate trichome branch extension, but the possible pathway(s) through which SPI regulates trichome morphogenesis remain unclear. Here, we report that SPI facilitates microtubule-associated regulation on trichome branching in Arabidopsis. Functional loss of SPI results in trichome morphogenesis hyper-sensitive to the microtubule-disrupting drug oryzalin, implying SPI may mediate microtubule stability during trichome development. Accordingly, spi mutant has less-branched trichomes. Detailed live-cell imaging showed that the spatio-temporal microtubule organization during trichome morphogenesis is aberrant in spi mutants. Further genetic investigation indicated that SPI may cooperate with ZWICHEL (ZWI) to modulate microtubule dynamics during trichome morphogenesis. ZWI encodes a kinesin-like calmodulin-binding protein (KCBP), whose distribution is necessary for the proper microtubule organization in trichomes, and zwi mutants produce less-branched trichomes as well. Trichome branching is further inhibited in spi-3 zwi-101 double mutants compared to either of the single mutant. Moreover, we found SPI could co-localize with the MYTH4 domain of ZWI. Taken together, our results expand the role of SPI in regulating trichome morphogenesis and also reveal a molecular and genetic pathway in plant cell shape formation control.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 5","pages":"115"},"PeriodicalIF":3.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-10-05DOI: 10.1007/s00425-024-04543-7
Bahman Panahi, Robab Khalilpour Shadbad
{"title":"Navigating the microalgal maze: a comprehensive review of recent advances and future perspectives in biological networks.","authors":"Bahman Panahi, Robab Khalilpour Shadbad","doi":"10.1007/s00425-024-04543-7","DOIUrl":"10.1007/s00425-024-04543-7","url":null,"abstract":"<p><strong>Main conclusion: </strong>PPI analysis deepens our knowledge in critical processes like carbon fixation and nutrient sensing. Moreover, signaling networks, including pathways like MAPK/ERK and TOR, provide valuable information in how microalgae respond to environmental changes and stress. Additionally, species-species interaction networks for microalgae provide a comprehensive understanding of how different species interact within their environments. This review examines recent advancements in the study of biological networks within microalgae, with a focus on the intricate interactions that define these organisms. It emphasizes how network biology, an interdisciplinary field, offers valuable insights into microalgae functions through various methodologies. Crucial approaches, such as protein-protein interaction (PPI) mapping utilizing yeast two-hybrid screening and mass spectrometry, are essential for comprehending cellular processes and optimizing functions, such as photosynthesis and fatty acid biosynthesis. The application of advanced computational methods and information mining has significantly improved PPI analysis, revealing networks involved in critical processes like carbon fixation and nutrient sensing. The review also encompasses transcriptional networks, which play a role in gene regulation and stress responses, as well as metabolic networks represented by genome-scale metabolic models (GEMs), which aid in strain optimization and the prediction of metabolic outcomes. Furthermore, signaling networks, including pathways like MAPK/ERK and TOR, are crucial for understanding how microalgae respond to environmental changes and stress. Additionally, species-species interaction networks for microalgae provide a comprehensive understanding of how different species interact within their environments. The integration of these network biology approaches has deepened our understanding of microalgal interactions, paving the way for more efficient cultivation and new industrial applications.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 5","pages":"114"},"PeriodicalIF":3.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-10-04DOI: 10.1007/s00425-024-04542-8
Ana Paula Lando, María Cecilia Terrile, María Agustina De Marco, Marianela Rodriguez, Giselle María Astrid Martínez-Noël
{"title":"Nitric oxide participates in sucrose-TOR signaling during meristem activation in Arabidopsis thaliana.","authors":"Ana Paula Lando, María Cecilia Terrile, María Agustina De Marco, Marianela Rodriguez, Giselle María Astrid Martínez-Noël","doi":"10.1007/s00425-024-04542-8","DOIUrl":"10.1007/s00425-024-04542-8","url":null,"abstract":"<p><strong>Main conclusion: </strong>This study provides evidence about the relationship between Target of Rapamycin (TOR) kinase and the signal molecule nitric oxide (NO) in plants. We showed that sucrose (SUC)-mediated TOR activation of root apical meristem (RAM) requires NO and that NO, in turn, participates in the regulation of TOR signaling. Nitric oxide (NO) constitutes a signal molecule that regulates important target proteins related to growth and development and also contributes to metabolic reprogramming that occurs under adverse conditions. Taking into account the important role of NO and its relationship with Target of Rapamycin (TOR) signaling in animals, we wondered about the putative link between both pathways in plants. With this aim, we studied a TOR-dependent process which is the reactivation of the root apical meristem (RAM) in Arabidopsis thaliana. We used pharmacological and genetic tools to evaluate the relationship between NO and TOR on the sugar induction of RAM, using SNP as NO donor, cPTIO as NO scavenger and the nitrate reductase (NR) mutant nia2. The results showed that sucrose (SUC)-mediated TOR activation of the RAM requires NO and that NO, in turn, participates in the regulation of TOR signaling. Interestingly, TOR activation induced by sugar increased the NO levels. We also observed that NO could mediate the repression of SnRK1 activity by SUC. By computational prediction we found putative S-nitrosylation sites in the TOR complex proteins and the catalytic subunit of SnRK1, SnRK1.1. The present work demonstrates for the first time a link between NO and TOR revealing the complex interplay between the two pathways in plants.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 5","pages":"113"},"PeriodicalIF":3.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlantaPub Date : 2024-10-03DOI: 10.1007/s00425-024-04541-9
Maryse A P Huve, Norbert Bittner, Reinhard Kunze, Monika Hilker, Mitja N P Remus-Emsermann, Luis R Paniagua Voirol, Vivien Lortzing
{"title":"Butterfly eggs prime anti-herbivore defense in an annual but not perennial Arabidopsis species.","authors":"Maryse A P Huve, Norbert Bittner, Reinhard Kunze, Monika Hilker, Mitja N P Remus-Emsermann, Luis R Paniagua Voirol, Vivien Lortzing","doi":"10.1007/s00425-024-04541-9","DOIUrl":"10.1007/s00425-024-04541-9","url":null,"abstract":"<p><strong>Main conclusion: </strong>Unlike Arabidopsis thaliana, defenses of Arabidopsis lyrata against Pieris brassicae larval feeding are not primable by P. brassicae eggs. Thus, egg primability of plant anti-herbivore defenses is not phylogenetically conserved in the genus Arabidopsis. While plant anti-herbivore defenses of the annual species Arabidopsis thaliana were shown to be primable by Pieris brassicae eggs, the primability of the phylogenetically closely related perennial Arabidopsis lyrata has not yet been investigated. Previous studies revealed that closely related wild Brassicaceae plant species, the annual Brassica nigra and the perennial B. oleracea, exhibit an egg-primable defense trait, even though they have different life spans. Here, we tested whether P. brassicae eggs prime anti-herbivore defenses of the perennial A. lyrata. We exposed A. lyrata to P. brassicae eggs and larval feeding and assessed their primability by (i) determining the biomass of P. brassicae larvae after feeding on plants with and without prior P. brassicae egg deposition and (ii) investigating the plant transcriptomic response after egg deposition and/or larval feeding. For comparison, these studies were also conducted with A. thaliana. Consistent with previous findings, A. thaliana's response to prior P. brassicae egg deposition negatively affected conspecific larvae feeding upon A. thaliana. However, this was not observed in A. lyrata. Arabidopsis thaliana responded to P. brassicae eggs with strong transcriptional reprogramming, whereas A. lyrata responses to eggs were negligible. In response to larval feeding, A. lyrata exhibited a greater transcriptome change compared to A. thaliana. Among the strongly feeding-induced A. lyrata genes were those that are egg-primed in feeding-induced A. thaliana, i.e., CAX3, PR1, PR5, and PDF1.4. These results suggest that A. lyrata has evolved a robust feeding response that is independent from prior egg exposure.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 5","pages":"112"},"PeriodicalIF":3.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}