Vijay Kamal Meena, R Thribhuvan, Vishal Dinkar, Ashish Bhatt, Saurabh Pandey, Abhinav, Dilshad Ahmad, Amarjeet Kumar, Ashutosh Singh
{"title":"Haplotype breeding: fast-track the crop improvements.","authors":"Vijay Kamal Meena, R Thribhuvan, Vishal Dinkar, Ashish Bhatt, Saurabh Pandey, Abhinav, Dilshad Ahmad, Amarjeet Kumar, Ashutosh Singh","doi":"10.1007/s00425-025-04622-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>Haplotype-based breeding unleashed the genetic variations of unexplored germplasms and integration with recent genomics tools accelerated the genetic gain and address the present challenges of food security by climate change. Climate change is linked to unforeseen abiotic stresses and changes in the patterns of pests and diseases. Hence, it is necessary to use novel methods to detect genetic variations to mitigate the adverse effects on crops by climate change. Genomic-assisted breeding methods are strategies that improve the efficiency of breeding cereal crops in a dynamic environment. These methods detect differences in the structure of single nucleotide polymorphisms (SNPs) throughout the population. The decrease in sequencing costs has enabled the thorough sequencing of crop genomes, resulting in the discovery of millions of SNPs. By using statistical tests, it is possible to integrate these SNPs into a limited number of haplotype blocks. This allows for a more comprehensive analysis of how variation is distributed and segregated within a population. Therefore, the use of haplotype-based breeding shows great potential as a tool for creating tailored crop varieties. The process entails the identification of superior haplotypes and their use in breeding operations. The haplotype-based breeding (HBB) technique utilizes genome sequence data to identify specific allelic variations that accelerate the breeding cycle and overcome linkage drag difficulties. This study aims to present the idea of HBB, examine the connection between haplotype breeding and conventional breeding, and analyze the benefits and current advancements of HBB, with a specific focus on cereal crops.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"261 3","pages":"51"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-025-04622-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Main conclusion: Haplotype-based breeding unleashed the genetic variations of unexplored germplasms and integration with recent genomics tools accelerated the genetic gain and address the present challenges of food security by climate change. Climate change is linked to unforeseen abiotic stresses and changes in the patterns of pests and diseases. Hence, it is necessary to use novel methods to detect genetic variations to mitigate the adverse effects on crops by climate change. Genomic-assisted breeding methods are strategies that improve the efficiency of breeding cereal crops in a dynamic environment. These methods detect differences in the structure of single nucleotide polymorphisms (SNPs) throughout the population. The decrease in sequencing costs has enabled the thorough sequencing of crop genomes, resulting in the discovery of millions of SNPs. By using statistical tests, it is possible to integrate these SNPs into a limited number of haplotype blocks. This allows for a more comprehensive analysis of how variation is distributed and segregated within a population. Therefore, the use of haplotype-based breeding shows great potential as a tool for creating tailored crop varieties. The process entails the identification of superior haplotypes and their use in breeding operations. The haplotype-based breeding (HBB) technique utilizes genome sequence data to identify specific allelic variations that accelerate the breeding cycle and overcome linkage drag difficulties. This study aims to present the idea of HBB, examine the connection between haplotype breeding and conventional breeding, and analyze the benefits and current advancements of HBB, with a specific focus on cereal crops.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.