Jiacheng Liu, Yuzan Xiong, Jingming Liang, Xuezhao Wu, Chen Liu, Shun Kong Cheung, Zheyu Ren, Ruizi Liu, Andrew Christy, Zehan Chen, Yifan Liu, Ferris Prima Nugraha, Xi-Xiang Zhang, Dennis Chi Wah Leung, Wei Zhang, Qiming Shao
{"title":"Strong magnon-magnon coupling and low dissipation rate in an all-magnetic-insulator heterostructure","authors":"Jiacheng Liu, Yuzan Xiong, Jingming Liang, Xuezhao Wu, Chen Liu, Shun Kong Cheung, Zheyu Ren, Ruizi Liu, Andrew Christy, Zehan Chen, Yifan Liu, Ferris Prima Nugraha, Xi-Xiang Zhang, Dennis Chi Wah Leung, Wei Zhang, Qiming Shao","doi":"10.1103/physrevapplied.22.034017","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.034017","url":null,"abstract":"Magnetic insulators, such as yttrium iron garnets (YIGs), are important for spin-wave or magnonic devices as their low damping enables low-power dissipation. Magnetic insulator heterostructures can offer larger design space for realizing exotic magnonic quantum states, provided that individual layers have low damping and their exchange coupling is strong and engineerable. Here, we show that, in a high-quality all-insulator thulium iron garnet (TmIG)/YIG bilayer system, TmIG exhibits an ultralow dissipation rate thanks to its low-damping, low-saturation magnetization and strong orbital momentum. The low dissipation rates in both YIG and TmIG, along with their significant coupling strength due to interfacial exchange coupling, enable strong and coherent magnon-magnon coupling. The coupling strength can be tuned by varying the magnetic insulator layer thickness and magnon modes, which is consistent with analytical calculations and micromagnetic simulations. Our results demonstrate TmIG/YIG as a novel platform for investigating hybrid magnonic phenomena and open opportunities for magnon devices comprising all-insulator heterostructures.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"4 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond quantum Shannon decomposition: Circuit construction for n-qubit gates based on block-ZXZ decomposition","authors":"Anna M. Krol, Zaid Al-Ars","doi":"10.1103/physrevapplied.22.034019","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.034019","url":null,"abstract":"This paper proposes an optimized quantum block-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi><mi>X</mi><mi>Z</mi></math> decomposition method that results in more optimal quantum circuits than the quantum Shannon decomposition, which was presented in 2005 by M. Möttönen, and J. J. Vartiainen [in <i>Trends in quantum computing research</i>, edited by S. Shannon (Nova Science Publishers, 2006) Chap. 7, p. 149, arXiv:quant-ph/0504100]. The decomposition is applied recursively to generic quantum gates, and can take advantage of existing and future small-circuit optimizations. Because our method uses only single-qubit gates and uniformly controlled rotation-Z gates, it can easily be adapted to use other types of multi-qubit gates. With the proposed decomposition, a general three-qubit gate can be decomposed using 19 <span>cnot</span> gates (rather than 20). For general <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>-qubit gates, the proposed decomposition generates circuits that have <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>22</mn><mn>48</mn></mfrac></mstyle><msup><mn>4</mn><mi>n</mi></msup><mo>−</mo><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>3</mn><mn>2</mn></mfrac></mstyle><msup><mn>2</mn><mi>n</mi></msup><mo>+</mo><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>5</mn><mn>3</mn></mfrac></mstyle></math> <span>cnot</span> gates, which is less than the best-known exact decomposition algorithm by <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msup><mn>4</mn><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo stretchy=\"false\">)</mo><mo>/</mo><mn>3</mn></math> <span>cnot</span> gates.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"17 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Vezin, Hamidreza Esmaielpour, Laurent Lombez, Jean-François Guillemoles, Daniel Suchet
{"title":"Optical determination of thermoelectric transport coefficients in a hot-carrier absorber","authors":"Thomas Vezin, Hamidreza Esmaielpour, Laurent Lombez, Jean-François Guillemoles, Daniel Suchet","doi":"10.1103/physrevapplied.22.034018","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.034018","url":null,"abstract":"Hot-carrier solar cells offer potential for enhancing the energy-conversion efficiency of photovoltaic devices. Transport properties of such systems remain largely unexplored but could hinder their efficiency. In this work, we develop a suitable framework for describing the thermoelectric ambipolar transport of photogenerated hot carriers and derive analytical expressions for the ambipolar transport coefficients that are valid even in the degenerate case. We demonstrate that these transport coefficients can be measured from hyperspectral photoluminescence imaging. We validate this experimental determination by showing its consistency with the Boltzmann transport equation in the relaxation-time approximation.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"7 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tunable sigmoid behavior of a magnon-based parametron using a Y3Fe5O12/Pt bilayer disk","authors":"Geil Emdi, Tomosato Hioki, Takahiko Makiuchi, Eiji Saitoh","doi":"10.1103/physrevapplied.22.l031002","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.l031002","url":null,"abstract":"Sigmoidal curve behavior of 0 and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> state probability in a magnon parametron, using yttrium iron garnet (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Y</mi><mn>3</mn></msub><msub><mi>Fe</mi><mn>5</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>12</mn></msub></math>) thin disk, is systematically investigated. We demonstrate that the probability distribution can be tuned by bias and pump microwave power. Our numerical calculation that considers increasing damping due to four-magnon scattering processes reproduces the results well.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"41 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tuning the thermal conductivity of a silicon membrane using nanopillars: From crystalline to amorphous pillars","authors":"Lina Yang, Yixin Xu, Xianheng Wang, Yanguang Zhou","doi":"10.1103/physrevapplied.22.034016","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.034016","url":null,"abstract":"Tuning thermal transport in nanostructures is essential for many applications, such as thermal management and thermoelectrics. Nanophononic metamaterials (NPMs) have shown great potential for reducing thermal conductivity. In this work, the thermal conductivity of NPMs with crystalline <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math>) pillar, crystalline <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ge</mi></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ge</mi></math>) pillar, and amorphous <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math>) pillar are systematically investigated by a molecular dynamics method. An analysis of phonon dispersion and spectral energy density shows that phonon dispersions of a <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> membrane are flattened due to local resonant hybridization induced by both crystalline and amorphous pillars. In addition, an <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> pillar can cause a larger reduction in thermal conductivity compared with a <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> pillar. Specifically, when the atomic mass of the atoms in the pillars increases, the thermal conductivity of NPMs with a crystalline pillar increases because of the weakened phonon hybridization. However, the thermal conductivity of NPMs with an amorphous pillar is almost unchanged. The analyses of the reduction of thermal conductivity show that both resonant hybridization and scattering mechanisms are important in NPMs with a crystalline pillar, while the scattering mechanism dominates in NPMs with an amorphous pillar and NPMs with a short crystalline pillar. The results of this work can provide meaningful insights into controlling thermal transport in NPMs by choosing the materials and atomic mass of pillars for specific applications.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"60 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter J. Hobson, Chris Morley, Alister Davis, Thomas Smith, Mark Fromhold
{"title":"Target-field design of surface permanent magnets","authors":"Peter J. Hobson, Chris Morley, Alister Davis, Thomas Smith, Mark Fromhold","doi":"10.1103/physrevapplied.22.034015","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.034015","url":null,"abstract":"We present a target-field approach to analytically design magnetic fields using permanent magnets. We assume that their magnetization is bound to a two-dimensional surface and is composed of a complete basis of surface modes. By posing the Poisson’s equation relating the magnetic scalar potential to the magnetization using Green’s functions, we derive simple integrals that determine the magnetic field generated by each mode. This approach is demonstrated by deriving the governing integrals for optimizing axial magnetization on cylindrical and circular-planar surfaces. We approximate the governing integrals numerically and implement them into a regularized least-squares optimization routine to design permanent magnets that generate uniform axial and transverse target magnetic fields. The resulting uniform axial magnetic field profiles demonstrate more than a tenfold increase in uniformity across equivalent target regions compared to the field generated by an optimally separated axially magnetized pair of rings, as validated using finite element method simulations. We use a simple example to examine how two-dimensional surface magnetization profiles can be emulated using thin three-dimensional volumes and determine how many discrete intervals are required to accurately approximate a continuously varying surface pattern. Magnets designed using our approach may enable higher-quality bias fields for electric machines, nuclear fusion, fundamental physics, magnetic trapping, and beyond.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"73 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First-principles nanocircuit model of open electromagnetic resonators","authors":"Carlo Forestiere, Giovanni Miano, Andrea Alù","doi":"10.1103/physrevapplied.22.034014","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.034014","url":null,"abstract":"We derive from first principles a general circuit model for open, frequency dispersive electromagnetic resonators in the full-wave regime. This model extends the concepts of radiation impedance to the polarization current-density modes induced in open resonators by an arbitrary external excitation. Its physics-based elements offer physical insights into the scattering problem and enable efficient modeling of the resonance frequency and associated bandwidth for arbitrary scattering resonances, establishing a powerful platform for the design and optimization of nanophotonic circuits. Our findings offer compelling prospects for electromagnetic scattering and ultrafast nanophotonics, streamlining the analysis and design of nanoresonators with enhanced operational speeds, and outlining a physics-based model of their temporal dynamics.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"32 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electron cooling behavior in cascading semiconductor double-quantum-well structures","authors":"Xiangyu Zhu, Chloé Salhani, Guéric Etesse, Naomi Nagai, Marc Bescond, Francesca Carosella, Robson Ferreira, Gérald Bastard, Kazuhiko Hirakawa","doi":"10.1103/physrevapplied.22.034012","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.034012","url":null,"abstract":"We investigate evaporative electron cooling in cascading semiconductor double-quantum-well (QW) structures. In this cascading double QW structure (QW1 and QW2, where QW2 is on the anode side), one electron absorbs two longitudinal optical (LO) phonons as it travels from the cathode to the anode, for which efficient thermionic cooling is expected. By analyzing the high-energy tail of the photoluminescence spectra, the electron temperature in each QW is determined. When <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Al</mi><mrow><mn>0.35</mn></mrow></msub><msub><mi>Ga</mi><mrow><mn>0.65</mn></mrow></msub><mi>As</mi></math> barriers are used, anomalous electron heating in QW2 due to hot electron distribution above the barrier is observed. By introducing taller barriers (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Al</mi><mrow><mn>0.7</mn></mrow></msub><msub><mi>Ga</mi><mrow><mn>0.3</mn></mrow></msub><mi>As</mi></math>) before QW2 to suppress hot electron distribution above the barrier, electron cooling in both QWs by several tens of kelvins is achieved. Furthermore, oscillatory anticorrelated electron temperature change in the two QWs that results from LO-phonon scattering is observed.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"38 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing-Yuan Chen, Fei-Jie Huang, Ju-Qi Ruan, Yi-Fen Zhao, Xiong-Fei Zhang, Kai Xiong, Yao He, CLEO Collaboration
{"title":"Two-dimensional P3¯m1Ca3N2, Ba3P2, and Ba3As2: Promising stable narrow-gap semiconductors for infrared and broadband photodetectors","authors":"Qing-Yuan Chen, Fei-Jie Huang, Ju-Qi Ruan, Yi-Fen Zhao, Xiong-Fei Zhang, Kai Xiong, Yao He, CLEO Collaboration","doi":"10.1103/physrevapplied.22.034013","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.034013","url":null,"abstract":"Exploring two-dimensional (2D) narrow-gap materials with exceptional stability and outstanding photoelectric performance has become a key focus in nano-optoelectronics. However, most existing 2D materials contain relatively large band gaps, and those with narrow band gaps tend to have inadequate stability. This study employed first-principles calculation to predict three alternative narrow-gap 2D binary group (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>II</mi><mn>3</mn></msub></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"normal\">V</mi></mrow><mn>2</mn></msub></math>) materials in the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mrow><mover><mn>3</mn><mo stretchy=\"false\">¯</mo></mover></mrow><mi>m</mi><mn>1</mn></math> space group: <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ca</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">N</mi></mrow><mn>2</mn></msub></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">P</mi></mrow><mn>2</mn></msub></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mi>As</mi><mn>2</mn></msub></math>. All these materials exhibit excellent energetic, mechanical, dynamic, and thermal stability. Their mechanical properties reveal isotropic characteristics and demonstrate excellent in-plane stiffness and flexibility. Regarding electronic properties, monolayer <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ca</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">N</mi></mrow><mn>2</mn></msub></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">P</mi></mrow><mn>2</mn></msub></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mi>As</mi><mn>2</mn></msub></math> possess indirect narrow band gaps of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0.41</mn></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0.61</mn></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0.68</mn></math> eV, respectively. Moreover, they exhibit high electron mobilities (about <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>3</mn></msup></math>–<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>4</mn></msup><mspace width=\"0.2em\"></mspace><msup><mi>cm<","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"180 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aina Wang, Zan Du, Fanying Meng, Azizur Rahman, Wei Liu, Jiyu Fan, Chunlan Ma, Langsheng Ling, Chuanying Xi, Min Ge, Li Pi, Yuheng Zhang, Lei Zhang
{"title":"Critical phenomenon of the ferromagnet Cr2Te3 with strong perpendicular magnetic anisotropy","authors":"Aina Wang, Zan Du, Fanying Meng, Azizur Rahman, Wei Liu, Jiyu Fan, Chunlan Ma, Langsheng Ling, Chuanying Xi, Min Ge, Li Pi, Yuheng Zhang, Lei Zhang","doi":"10.1103/physrevapplied.22.034006","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.034006","url":null,"abstract":"Chromium telluride <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Cr</mi><mi>x</mi></msub><msub><mi>Te</mi><mi>y</mi></msub></math> has great potential applications in spintronics due to its intrinsic ferromagnetism and strong magnetic anisotropy. In this study, we systematically investigate magnetic properties of a ferromagnetic <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Cr</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>3</mn></msub></math> single crystal with strong perpendicular magnetic anisotropy (PMA). Apart from ferromagnetic-to-paramagnetic (FM-PM) transitions at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>C</mi></msub><mo>∼</mo><mn>181</mn></math> K for both <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</mi><mo>/</mo><mo>/</mo><mi>c</mi></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</mi><mo>/</mo><mo>/</mo><mi>a</mi><mi>b</mi></math>, other exotic magnetic behaviors are revealed, such as a field-modulated first-order transition uncovered by the anisotropic magnetization, a canted FM coupling rather than previously reported spin-glass behavior demonstrated by the ac susceptibility. Furthermore, anisotropic magnetization reveals significant PMA stronger than any other <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cr</mi></math>-based transition metal chalcogenide, with a negligible saturation field for <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</mi><mo>/</mo><mo>/</mo><mi>c</mi></math> but a distinct one up to 155 kOe for <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</mi><mo>/</mo><mo>/</mo><mi>a</mi><mi>b</mi></math>. Critical exponents <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>β</mi><mo>=</mo><mn>0.340</mn><mo stretchy=\"false\">(</mo><mn>5</mn><mo stretchy=\"false\">)</mo></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi><mo>=</mo><mn>1.114</mn><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>δ</mi><mo>=</mo><mn>4.504</mn><mo stretchy=\"false\">(</mo><mn>5</mn><mo stretchy=\"false\">)</mo></math> are obtained for <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</mi><mo>/</mo><mo>/</mo><mi>c</mi></math>, which fall between the three-dimensional (3D)-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi><mi>Y</mi></math> and 3D-Ising models indicative of anisotropic magnetic coupling. An <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</m","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"38 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}