{"title":"级联半导体双量子阱结构中的电子冷却行为","authors":"Xiangyu Zhu, Chloé Salhani, Guéric Etesse, Naomi Nagai, Marc Bescond, Francesca Carosella, Robson Ferreira, Gérald Bastard, Kazuhiko Hirakawa","doi":"10.1103/physrevapplied.22.034012","DOIUrl":null,"url":null,"abstract":"We investigate evaporative electron cooling in cascading semiconductor double-quantum-well (QW) structures. In this cascading double QW structure (QW1 and QW2, where QW2 is on the anode side), one electron absorbs two longitudinal optical (LO) phonons as it travels from the cathode to the anode, for which efficient thermionic cooling is expected. By analyzing the high-energy tail of the photoluminescence spectra, the electron temperature in each QW is determined. When <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Al</mi><mrow><mn>0.35</mn></mrow></msub><msub><mi>Ga</mi><mrow><mn>0.65</mn></mrow></msub><mi>As</mi></math> barriers are used, anomalous electron heating in QW2 due to hot electron distribution above the barrier is observed. By introducing taller barriers (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Al</mi><mrow><mn>0.7</mn></mrow></msub><msub><mi>Ga</mi><mrow><mn>0.3</mn></mrow></msub><mi>As</mi></math>) before QW2 to suppress hot electron distribution above the barrier, electron cooling in both QWs by several tens of kelvins is achieved. Furthermore, oscillatory anticorrelated electron temperature change in the two QWs that results from LO-phonon scattering is observed.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"38 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron cooling behavior in cascading semiconductor double-quantum-well structures\",\"authors\":\"Xiangyu Zhu, Chloé Salhani, Guéric Etesse, Naomi Nagai, Marc Bescond, Francesca Carosella, Robson Ferreira, Gérald Bastard, Kazuhiko Hirakawa\",\"doi\":\"10.1103/physrevapplied.22.034012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate evaporative electron cooling in cascading semiconductor double-quantum-well (QW) structures. In this cascading double QW structure (QW1 and QW2, where QW2 is on the anode side), one electron absorbs two longitudinal optical (LO) phonons as it travels from the cathode to the anode, for which efficient thermionic cooling is expected. By analyzing the high-energy tail of the photoluminescence spectra, the electron temperature in each QW is determined. When <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Al</mi><mrow><mn>0.35</mn></mrow></msub><msub><mi>Ga</mi><mrow><mn>0.65</mn></mrow></msub><mi>As</mi></math> barriers are used, anomalous electron heating in QW2 due to hot electron distribution above the barrier is observed. By introducing taller barriers (<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Al</mi><mrow><mn>0.7</mn></mrow></msub><msub><mi>Ga</mi><mrow><mn>0.3</mn></mrow></msub><mi>As</mi></math>) before QW2 to suppress hot electron distribution above the barrier, electron cooling in both QWs by several tens of kelvins is achieved. Furthermore, oscillatory anticorrelated electron temperature change in the two QWs that results from LO-phonon scattering is observed.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.034012\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034012","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Electron cooling behavior in cascading semiconductor double-quantum-well structures
We investigate evaporative electron cooling in cascading semiconductor double-quantum-well (QW) structures. In this cascading double QW structure (QW1 and QW2, where QW2 is on the anode side), one electron absorbs two longitudinal optical (LO) phonons as it travels from the cathode to the anode, for which efficient thermionic cooling is expected. By analyzing the high-energy tail of the photoluminescence spectra, the electron temperature in each QW is determined. When barriers are used, anomalous electron heating in QW2 due to hot electron distribution above the barrier is observed. By introducing taller barriers () before QW2 to suppress hot electron distribution above the barrier, electron cooling in both QWs by several tens of kelvins is achieved. Furthermore, oscillatory anticorrelated electron temperature change in the two QWs that results from LO-phonon scattering is observed.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.