Tuning the thermal conductivity of a silicon membrane using nanopillars: From crystalline to amorphous pillars

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Lina Yang, Yixin Xu, Xianheng Wang, Yanguang Zhou
{"title":"Tuning the thermal conductivity of a silicon membrane using nanopillars: From crystalline to amorphous pillars","authors":"Lina Yang, Yixin Xu, Xianheng Wang, Yanguang Zhou","doi":"10.1103/physrevapplied.22.034016","DOIUrl":null,"url":null,"abstract":"Tuning thermal transport in nanostructures is essential for many applications, such as thermal management and thermoelectrics. Nanophononic metamaterials (NPMs) have shown great potential for reducing thermal conductivity. In this work, the thermal conductivity of NPMs with crystalline <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math>) pillar, crystalline <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ge</mi></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ge</mi></math>) pillar, and amorphous <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math>) pillar are systematically investigated by a molecular dynamics method. An analysis of phonon dispersion and spectral energy density shows that phonon dispersions of a <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> membrane are flattened due to local resonant hybridization induced by both crystalline and amorphous pillars. In addition, an <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> pillar can cause a larger reduction in thermal conductivity compared with a <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> pillar. Specifically, when the atomic mass of the atoms in the pillars increases, the thermal conductivity of NPMs with a crystalline pillar increases because of the weakened phonon hybridization. However, the thermal conductivity of NPMs with an amorphous pillar is almost unchanged. The analyses of the reduction of thermal conductivity show that both resonant hybridization and scattering mechanisms are important in NPMs with a crystalline pillar, while the scattering mechanism dominates in NPMs with an amorphous pillar and NPMs with a short crystalline pillar. The results of this work can provide meaningful insights into controlling thermal transport in NPMs by choosing the materials and atomic mass of pillars for specific applications.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"60 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Tuning thermal transport in nanostructures is essential for many applications, such as thermal management and thermoelectrics. Nanophononic metamaterials (NPMs) have shown great potential for reducing thermal conductivity. In this work, the thermal conductivity of NPMs with crystalline Si (c-Si) pillar, crystalline Ge (c-Ge) pillar, and amorphous Si (a-Si) pillar are systematically investigated by a molecular dynamics method. An analysis of phonon dispersion and spectral energy density shows that phonon dispersions of a Si membrane are flattened due to local resonant hybridization induced by both crystalline and amorphous pillars. In addition, an a-Si pillar can cause a larger reduction in thermal conductivity compared with a c-Si pillar. Specifically, when the atomic mass of the atoms in the pillars increases, the thermal conductivity of NPMs with a crystalline pillar increases because of the weakened phonon hybridization. However, the thermal conductivity of NPMs with an amorphous pillar is almost unchanged. The analyses of the reduction of thermal conductivity show that both resonant hybridization and scattering mechanisms are important in NPMs with a crystalline pillar, while the scattering mechanism dominates in NPMs with an amorphous pillar and NPMs with a short crystalline pillar. The results of this work can provide meaningful insights into controlling thermal transport in NPMs by choosing the materials and atomic mass of pillars for specific applications.

Abstract Image

利用纳米柱调节硅膜的导热性:从晶体柱到非晶柱
调谐纳米结构中的热传输对于热管理和热电等许多应用至关重要。纳米声超材料(NPM)在降低热传导率方面显示出巨大的潜力。在这项研究中,采用分子动力学方法系统地研究了具有晶体硅(c-Si)柱、晶体锗(c-Ge)柱和非晶硅(a-Si)柱的纳米超材料的热导率。对声子频散和频谱能量密度的分析表明,由于晶体和非晶柱引起的局部共振杂化,硅膜的声子频散变得扁平。此外,与晶体硅柱相比,非晶硅柱会导致热导率大幅降低。具体来说,当支柱中原子的原子质量增加时,由于声子杂化减弱,具有晶柱的 NPM 的热导率会增加。然而,具有非晶柱的 NPM 的热导率几乎没有变化。对热导率降低的分析表明,共振杂化和散射机制在具有晶柱的 NPM 中都很重要,而在具有非晶柱的 NPM 和具有短晶柱的 NPM 中,散射机制占主导地位。这项工作的结果可为我们提供有意义的见解,帮助我们通过选择材料和原子质量的支柱来控制 NPM 中的热传输,从而满足特定应用的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信