开放式电磁谐振器的第一原理纳米电路模型

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Carlo Forestiere, Giovanni Miano, Andrea Alù
{"title":"开放式电磁谐振器的第一原理纳米电路模型","authors":"Carlo Forestiere, Giovanni Miano, Andrea Alù","doi":"10.1103/physrevapplied.22.034014","DOIUrl":null,"url":null,"abstract":"We derive from first principles a general circuit model for open, frequency dispersive electromagnetic resonators in the full-wave regime. This model extends the concepts of radiation impedance to the polarization current-density modes induced in open resonators by an arbitrary external excitation. Its physics-based elements offer physical insights into the scattering problem and enable efficient modeling of the resonance frequency and associated bandwidth for arbitrary scattering resonances, establishing a powerful platform for the design and optimization of nanophotonic circuits. Our findings offer compelling prospects for electromagnetic scattering and ultrafast nanophotonics, streamlining the analysis and design of nanoresonators with enhanced operational speeds, and outlining a physics-based model of their temporal dynamics.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"32 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles nanocircuit model of open electromagnetic resonators\",\"authors\":\"Carlo Forestiere, Giovanni Miano, Andrea Alù\",\"doi\":\"10.1103/physrevapplied.22.034014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive from first principles a general circuit model for open, frequency dispersive electromagnetic resonators in the full-wave regime. This model extends the concepts of radiation impedance to the polarization current-density modes induced in open resonators by an arbitrary external excitation. Its physics-based elements offer physical insights into the scattering problem and enable efficient modeling of the resonance frequency and associated bandwidth for arbitrary scattering resonances, establishing a powerful platform for the design and optimization of nanophotonic circuits. Our findings offer compelling prospects for electromagnetic scattering and ultrafast nanophotonics, streamlining the analysis and design of nanoresonators with enhanced operational speeds, and outlining a physics-based model of their temporal dynamics.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.034014\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034014","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们从第一原理出发,推导出了全波状态下开放式频率色散电磁谐振器的一般电路模型。该模型将辐射阻抗的概念扩展到任意外部激励在开放式谐振器中诱导的极化电流密度模式。其基于物理学的元素提供了对散射问题的物理洞察力,并能对任意散射谐振的谐振频率和相关带宽进行有效建模,为纳米光子电路的设计和优化建立了一个强大的平台。我们的研究成果为电磁散射和超快纳米光子学提供了令人信服的前景,简化了具有更快运行速度的纳米谐振器的分析和设计,并概述了基于物理学的时间动力学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First-principles nanocircuit model of open electromagnetic resonators

First-principles nanocircuit model of open electromagnetic resonators
We derive from first principles a general circuit model for open, frequency dispersive electromagnetic resonators in the full-wave regime. This model extends the concepts of radiation impedance to the polarization current-density modes induced in open resonators by an arbitrary external excitation. Its physics-based elements offer physical insights into the scattering problem and enable efficient modeling of the resonance frequency and associated bandwidth for arbitrary scattering resonances, establishing a powerful platform for the design and optimization of nanophotonic circuits. Our findings offer compelling prospects for electromagnetic scattering and ultrafast nanophotonics, streamlining the analysis and design of nanoresonators with enhanced operational speeds, and outlining a physics-based model of their temporal dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信