{"title":"开放式电磁谐振器的第一原理纳米电路模型","authors":"Carlo Forestiere, Giovanni Miano, Andrea Alù","doi":"10.1103/physrevapplied.22.034014","DOIUrl":null,"url":null,"abstract":"We derive from first principles a general circuit model for open, frequency dispersive electromagnetic resonators in the full-wave regime. This model extends the concepts of radiation impedance to the polarization current-density modes induced in open resonators by an arbitrary external excitation. Its physics-based elements offer physical insights into the scattering problem and enable efficient modeling of the resonance frequency and associated bandwidth for arbitrary scattering resonances, establishing a powerful platform for the design and optimization of nanophotonic circuits. Our findings offer compelling prospects for electromagnetic scattering and ultrafast nanophotonics, streamlining the analysis and design of nanoresonators with enhanced operational speeds, and outlining a physics-based model of their temporal dynamics.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"32 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles nanocircuit model of open electromagnetic resonators\",\"authors\":\"Carlo Forestiere, Giovanni Miano, Andrea Alù\",\"doi\":\"10.1103/physrevapplied.22.034014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive from first principles a general circuit model for open, frequency dispersive electromagnetic resonators in the full-wave regime. This model extends the concepts of radiation impedance to the polarization current-density modes induced in open resonators by an arbitrary external excitation. Its physics-based elements offer physical insights into the scattering problem and enable efficient modeling of the resonance frequency and associated bandwidth for arbitrary scattering resonances, establishing a powerful platform for the design and optimization of nanophotonic circuits. Our findings offer compelling prospects for electromagnetic scattering and ultrafast nanophotonics, streamlining the analysis and design of nanoresonators with enhanced operational speeds, and outlining a physics-based model of their temporal dynamics.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.034014\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034014","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
First-principles nanocircuit model of open electromagnetic resonators
We derive from first principles a general circuit model for open, frequency dispersive electromagnetic resonators in the full-wave regime. This model extends the concepts of radiation impedance to the polarization current-density modes induced in open resonators by an arbitrary external excitation. Its physics-based elements offer physical insights into the scattering problem and enable efficient modeling of the resonance frequency and associated bandwidth for arbitrary scattering resonances, establishing a powerful platform for the design and optimization of nanophotonic circuits. Our findings offer compelling prospects for electromagnetic scattering and ultrafast nanophotonics, streamlining the analysis and design of nanoresonators with enhanced operational speeds, and outlining a physics-based model of their temporal dynamics.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.