{"title":"利用纳米柱调节硅膜的导热性:从晶体柱到非晶柱","authors":"Lina Yang, Yixin Xu, Xianheng Wang, Yanguang Zhou","doi":"10.1103/physrevapplied.22.034016","DOIUrl":null,"url":null,"abstract":"Tuning thermal transport in nanostructures is essential for many applications, such as thermal management and thermoelectrics. Nanophononic metamaterials (NPMs) have shown great potential for reducing thermal conductivity. In this work, the thermal conductivity of NPMs with crystalline <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math>) pillar, crystalline <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ge</mi></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ge</mi></math>) pillar, and amorphous <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math>) pillar are systematically investigated by a molecular dynamics method. An analysis of phonon dispersion and spectral energy density shows that phonon dispersions of a <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> membrane are flattened due to local resonant hybridization induced by both crystalline and amorphous pillars. In addition, an <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> pillar can cause a larger reduction in thermal conductivity compared with a <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Si</mi></math> pillar. Specifically, when the atomic mass of the atoms in the pillars increases, the thermal conductivity of NPMs with a crystalline pillar increases because of the weakened phonon hybridization. However, the thermal conductivity of NPMs with an amorphous pillar is almost unchanged. The analyses of the reduction of thermal conductivity show that both resonant hybridization and scattering mechanisms are important in NPMs with a crystalline pillar, while the scattering mechanism dominates in NPMs with an amorphous pillar and NPMs with a short crystalline pillar. The results of this work can provide meaningful insights into controlling thermal transport in NPMs by choosing the materials and atomic mass of pillars for specific applications.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"60 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the thermal conductivity of a silicon membrane using nanopillars: From crystalline to amorphous pillars\",\"authors\":\"Lina Yang, Yixin Xu, Xianheng Wang, Yanguang Zhou\",\"doi\":\"10.1103/physrevapplied.22.034016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuning thermal transport in nanostructures is essential for many applications, such as thermal management and thermoelectrics. Nanophononic metamaterials (NPMs) have shown great potential for reducing thermal conductivity. In this work, the thermal conductivity of NPMs with crystalline <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Si</mi></math> (<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>c</mi></math>-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Si</mi></math>) pillar, crystalline <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Ge</mi></math> (<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>c</mi></math>-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Ge</mi></math>) pillar, and amorphous <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Si</mi></math> (<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>a</mi></math>-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Si</mi></math>) pillar are systematically investigated by a molecular dynamics method. An analysis of phonon dispersion and spectral energy density shows that phonon dispersions of a <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Si</mi></math> membrane are flattened due to local resonant hybridization induced by both crystalline and amorphous pillars. In addition, an <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>a</mi></math>-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Si</mi></math> pillar can cause a larger reduction in thermal conductivity compared with a <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>c</mi></math>-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Si</mi></math> pillar. Specifically, when the atomic mass of the atoms in the pillars increases, the thermal conductivity of NPMs with a crystalline pillar increases because of the weakened phonon hybridization. However, the thermal conductivity of NPMs with an amorphous pillar is almost unchanged. The analyses of the reduction of thermal conductivity show that both resonant hybridization and scattering mechanisms are important in NPMs with a crystalline pillar, while the scattering mechanism dominates in NPMs with an amorphous pillar and NPMs with a short crystalline pillar. The results of this work can provide meaningful insights into controlling thermal transport in NPMs by choosing the materials and atomic mass of pillars for specific applications.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.034016\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Tuning the thermal conductivity of a silicon membrane using nanopillars: From crystalline to amorphous pillars
Tuning thermal transport in nanostructures is essential for many applications, such as thermal management and thermoelectrics. Nanophononic metamaterials (NPMs) have shown great potential for reducing thermal conductivity. In this work, the thermal conductivity of NPMs with crystalline (-) pillar, crystalline (-) pillar, and amorphous (-) pillar are systematically investigated by a molecular dynamics method. An analysis of phonon dispersion and spectral energy density shows that phonon dispersions of a membrane are flattened due to local resonant hybridization induced by both crystalline and amorphous pillars. In addition, an - pillar can cause a larger reduction in thermal conductivity compared with a - pillar. Specifically, when the atomic mass of the atoms in the pillars increases, the thermal conductivity of NPMs with a crystalline pillar increases because of the weakened phonon hybridization. However, the thermal conductivity of NPMs with an amorphous pillar is almost unchanged. The analyses of the reduction of thermal conductivity show that both resonant hybridization and scattering mechanisms are important in NPMs with a crystalline pillar, while the scattering mechanism dominates in NPMs with an amorphous pillar and NPMs with a short crystalline pillar. The results of this work can provide meaningful insights into controlling thermal transport in NPMs by choosing the materials and atomic mass of pillars for specific applications.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.