Electron cooling behavior in cascading semiconductor double-quantum-well structures

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Xiangyu Zhu, Chloé Salhani, Guéric Etesse, Naomi Nagai, Marc Bescond, Francesca Carosella, Robson Ferreira, Gérald Bastard, Kazuhiko Hirakawa
{"title":"Electron cooling behavior in cascading semiconductor double-quantum-well structures","authors":"Xiangyu Zhu, Chloé Salhani, Guéric Etesse, Naomi Nagai, Marc Bescond, Francesca Carosella, Robson Ferreira, Gérald Bastard, Kazuhiko Hirakawa","doi":"10.1103/physrevapplied.22.034012","DOIUrl":null,"url":null,"abstract":"We investigate evaporative electron cooling in cascading semiconductor double-quantum-well (QW) structures. In this cascading double QW structure (QW1 and QW2, where QW2 is on the anode side), one electron absorbs two longitudinal optical (LO) phonons as it travels from the cathode to the anode, for which efficient thermionic cooling is expected. By analyzing the high-energy tail of the photoluminescence spectra, the electron temperature in each QW is determined. When <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Al</mi><mrow><mn>0.35</mn></mrow></msub><msub><mi>Ga</mi><mrow><mn>0.65</mn></mrow></msub><mi>As</mi></math> barriers are used, anomalous electron heating in QW2 due to hot electron distribution above the barrier is observed. By introducing taller barriers (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Al</mi><mrow><mn>0.7</mn></mrow></msub><msub><mi>Ga</mi><mrow><mn>0.3</mn></mrow></msub><mi>As</mi></math>) before QW2 to suppress hot electron distribution above the barrier, electron cooling in both QWs by several tens of kelvins is achieved. Furthermore, oscillatory anticorrelated electron temperature change in the two QWs that results from LO-phonon scattering is observed.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"38 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034012","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate evaporative electron cooling in cascading semiconductor double-quantum-well (QW) structures. In this cascading double QW structure (QW1 and QW2, where QW2 is on the anode side), one electron absorbs two longitudinal optical (LO) phonons as it travels from the cathode to the anode, for which efficient thermionic cooling is expected. By analyzing the high-energy tail of the photoluminescence spectra, the electron temperature in each QW is determined. When Al0.35Ga0.65As barriers are used, anomalous electron heating in QW2 due to hot electron distribution above the barrier is observed. By introducing taller barriers (Al0.7Ga0.3As) before QW2 to suppress hot electron distribution above the barrier, electron cooling in both QWs by several tens of kelvins is achieved. Furthermore, oscillatory anticorrelated electron temperature change in the two QWs that results from LO-phonon scattering is observed.

Abstract Image

级联半导体双量子阱结构中的电子冷却行为
我们研究了级联半导体双量子阱(QW)结构中的蒸发电子冷却。在这种级联双量子阱结构(QW1 和 QW2,其中 QW2 位于阳极侧)中,一个电子在从阴极到阳极的过程中会吸收两个纵向光学(LO)声子,因此有望实现高效的热离子冷却。通过分析光致发光光谱的高能尾部,可以确定每个 QW 中的电子温度。当使用 Al0.35Ga0.65As 势垒时,由于势垒上方的热电子分布,在 QW2 中观察到异常的电子加热现象。通过在 QW2 之前引入较高的势垒(Al0.7Ga0.3As)来抑制势垒上方的热电子分布,两个 QW 中的电子冷却了几十开尔文。此外,还观察到两个 QW 中因 LO 光子散射而产生的振荡反相关电子温度变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信