Plant PhysiologyPub Date : 2025-03-01DOI: 10.1093/plphys/kiaf071
Pritha Kundu, Sanket Shinde, Sajjan Grover, Scott E Sattler, Joe Louis
{"title":"Caffeic acid O-methyltransferase-dependent flavonoid defenses promote sorghum resistance to fall armyworm infestation.","authors":"Pritha Kundu, Sanket Shinde, Sajjan Grover, Scott E Sattler, Joe Louis","doi":"10.1093/plphys/kiaf071","DOIUrl":"10.1093/plphys/kiaf071","url":null,"abstract":"<p><p>Sorghum (Sorghum bicolor), one of the world's most important monocot crops, suffers severe yield losses due to attack by a polyphagous insect pest, fall armyworm (FAW; Spodoptera frugiperda). Here, we show that the Brown midrib 12 (Bmr12) gene, which encodes the caffeic acid O-methyltransferase (COMT) enzyme, promotes sorghum defense against FAW. Loss of Bmr12 function resulted in increased susceptibility, but enhanced resistance to FAW was observed in Bmr12-overexpression (OE) plants compared with wild-type (RTx430) plants. Although COMT is associated with modulating lignin levels, FAW infestation resulted in comparable lignin levels between bmr12 and Bmr12-OE sorghum plants. On the contrary, evidence presented here indicates that FAW feeding induced the accumulation of flavonoids, which was previously shown to have a negative impact on FAW growth and survival in Bmr12-OE plants compared with bmr12 and RTx430 plants. Furthermore, a combination of phytohormone profiling and transcriptomic analysis uncovered that COMT-mediated resistance to FAW depends on jasmonic acid (JA) and oxidative stress-associated pathways. Exogenous application of FAW oral secretions stimulated flavonoid accumulation in Bmr12-OE plants compared with bmr12 and RTx430 plants, indicating that COMT has an essential function in perceiving FAW oral cues. Taken together, the critical role of COMT in sorghum defense against FAW hinges upon the interplay between JA and its derivatives and hydrogen peroxide, which potentially helps to mount a robust flavonoid-based host defense upon caterpillar attack.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2025-03-01DOI: 10.1093/plphys/kiaf085
Jiawen Chen
{"title":"A new starch: Dynamics of Arabidopsis starch metabolism are influenced by the oligosaccharide pool.","authors":"Jiawen Chen","doi":"10.1093/plphys/kiaf085","DOIUrl":"10.1093/plphys/kiaf085","url":null,"abstract":"","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2025-03-01DOI: 10.1093/plphys/kiaf064
Nicola Trozzi, Janlo M Robil
{"title":"Bright ideas: How leaf cells shape the way plants capture light.","authors":"Nicola Trozzi, Janlo M Robil","doi":"10.1093/plphys/kiaf064","DOIUrl":"10.1093/plphys/kiaf064","url":null,"abstract":"","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2025-03-01DOI: 10.1093/plphys/kiaf097
Yao He, Shishi Liu, Xuelian Zheng, Yiping Qi, Yong Zhang
{"title":"Systemic evaluation of the inhibitory effects of 4 anti-CRISPR systems on different Cas12a nucleases in rice.","authors":"Yao He, Shishi Liu, Xuelian Zheng, Yiping Qi, Yong Zhang","doi":"10.1093/plphys/kiaf097","DOIUrl":"https://doi.org/10.1093/plphys/kiaf097","url":null,"abstract":"","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"197 3","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2025-03-01Epub Date: 2025-02-21DOI: 10.1093/plphys/kiaf073
James C Chamness, Jon P Cody, Anna J Cruz, Daniel F Voytas
{"title":"Viral delivery of recombinases activates heritable genetic switches in plants.","authors":"James C Chamness, Jon P Cody, Anna J Cruz, Daniel F Voytas","doi":"10.1093/plphys/kiaf073","DOIUrl":"10.1093/plphys/kiaf073","url":null,"abstract":"<p><p>Viral vectors provide an increasingly versatile platform for transformation-free reagent delivery to plants. RNA viral vectors can be used to induce gene silencing, overexpress proteins, or introduce gene editing reagents; however, they are often constrained by carrying capacity or restricted tropism in germline cells. Site-specific recombinases that catalyze precise genetic rearrangements are powerful tools for genome engineering that vary in size and, potentially, efficacy in plants. In this work, we show that viral vectors based on tobacco rattle virus (TRV) deliver and stably express four recombinases ranging in size from ∼0.6 to ∼1.5 kb and achieve simultaneous marker removal and reporter activation through targeted excision in transgenic Nicotiana benthamiana lines. TRV vectors with Cre, FLP, CinH, and Integrase13 efficiently mediated recombination in infected somatic tissue and led to heritable modifications at high frequency. An excision-activated Ruby reporter enabled simple and high-resolution tracing of infected cell lineages without the need for molecular genotyping. Together, our experiments broaden the scope of viral recombinase delivery and offer insights into infection dynamics that may be useful in developing future viral vectors.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"197 3","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143664271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}