{"title":"Nhd1-MYB110-MADS15转录因子模块调控水稻开花时间","authors":"Yi Jin, Lixiao Deng, Tingting Wang, Zhiyuan Wang, Yuanyuan Jing, Mengke Du, Xuesong Li, Hongye Qu, Wona Ding, Ying Liu, Mian Gu, Shunan Zhang, Guohua Xu","doi":"10.1093/plphys/kiaf270","DOIUrl":null,"url":null,"abstract":"The precise regulation of flowering time, known as heading date in rice (Oryza sativa L.), is critical for regional adaptation, agricultural productivity, and crop rotation practices. In rice, the florigen activation complex (FAC) and its downstream effectors are well-characterized mediators of the floral transition in the shoot apical meristem (SAM). Here, we characterized OsMYB110 as a SAM-localized transcription factor that promotes flowering, exhibiting functional similarity to the established flowering regulator Nhd1 (N-mediated heading date-1). Through integrated molecular and genetic analyses, we demonstrate that: (1) Nhd1 directly binds to the OsMYB110 promoter to activate its expression, while OsMYB110 in turn binds to and activates the OsMADS15 promoter to control flowering progression, and (2) genetic epistasis places OsMYB110 downstream of Nhd1 but upstream of OsMADS15 in the flowering regulation hierarchy. Furthermore, while elevated phosphate accelerates flowering, this response is abolished in myb110 and mads15 mutants but maintained in nhd1 mutants. These results define a previously unrecognized Nhd1–OsMYB110–OsMADS15 regulatory module that integrates developmental and nutrient signaling pathways to control rice flowering time.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"637 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Nhd1–MYB110–MADS15 transcription factor module regulates flowering time in rice\",\"authors\":\"Yi Jin, Lixiao Deng, Tingting Wang, Zhiyuan Wang, Yuanyuan Jing, Mengke Du, Xuesong Li, Hongye Qu, Wona Ding, Ying Liu, Mian Gu, Shunan Zhang, Guohua Xu\",\"doi\":\"10.1093/plphys/kiaf270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise regulation of flowering time, known as heading date in rice (Oryza sativa L.), is critical for regional adaptation, agricultural productivity, and crop rotation practices. In rice, the florigen activation complex (FAC) and its downstream effectors are well-characterized mediators of the floral transition in the shoot apical meristem (SAM). Here, we characterized OsMYB110 as a SAM-localized transcription factor that promotes flowering, exhibiting functional similarity to the established flowering regulator Nhd1 (N-mediated heading date-1). Through integrated molecular and genetic analyses, we demonstrate that: (1) Nhd1 directly binds to the OsMYB110 promoter to activate its expression, while OsMYB110 in turn binds to and activates the OsMADS15 promoter to control flowering progression, and (2) genetic epistasis places OsMYB110 downstream of Nhd1 but upstream of OsMADS15 in the flowering regulation hierarchy. Furthermore, while elevated phosphate accelerates flowering, this response is abolished in myb110 and mads15 mutants but maintained in nhd1 mutants. These results define a previously unrecognized Nhd1–OsMYB110–OsMADS15 regulatory module that integrates developmental and nutrient signaling pathways to control rice flowering time.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"637 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiaf270\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf270","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The Nhd1–MYB110–MADS15 transcription factor module regulates flowering time in rice
The precise regulation of flowering time, known as heading date in rice (Oryza sativa L.), is critical for regional adaptation, agricultural productivity, and crop rotation practices. In rice, the florigen activation complex (FAC) and its downstream effectors are well-characterized mediators of the floral transition in the shoot apical meristem (SAM). Here, we characterized OsMYB110 as a SAM-localized transcription factor that promotes flowering, exhibiting functional similarity to the established flowering regulator Nhd1 (N-mediated heading date-1). Through integrated molecular and genetic analyses, we demonstrate that: (1) Nhd1 directly binds to the OsMYB110 promoter to activate its expression, while OsMYB110 in turn binds to and activates the OsMADS15 promoter to control flowering progression, and (2) genetic epistasis places OsMYB110 downstream of Nhd1 but upstream of OsMADS15 in the flowering regulation hierarchy. Furthermore, while elevated phosphate accelerates flowering, this response is abolished in myb110 and mads15 mutants but maintained in nhd1 mutants. These results define a previously unrecognized Nhd1–OsMYB110–OsMADS15 regulatory module that integrates developmental and nutrient signaling pathways to control rice flowering time.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.