Plant Physiology最新文献

筛选
英文 中文
BRASSINAZOLE RESISTANT 1 delays photoperiodic flowering by repressing CONSTANS transcription 油菜素唑抗性1通过抑制CONSTANS转录延迟光周期开花
IF 7.4 1区 生物学
Plant Physiology Pub Date : 2025-01-23 DOI: 10.1093/plphys/kiaf032
Xingwen Xu, Wenbo Jiang, Yangbo Chen, Hao Tian, Zijian Yang, Shuo Liu, Xiaopeng Li, Chunhui Song, Zhangli Ye, Wei Guo, Dongdong Kong, Congcong Hou, Legong Li, Liangyu Liu
{"title":"BRASSINAZOLE RESISTANT 1 delays photoperiodic flowering by repressing CONSTANS transcription","authors":"Xingwen Xu, Wenbo Jiang, Yangbo Chen, Hao Tian, Zijian Yang, Shuo Liu, Xiaopeng Li, Chunhui Song, Zhangli Ye, Wei Guo, Dongdong Kong, Congcong Hou, Legong Li, Liangyu Liu","doi":"10.1093/plphys/kiaf032","DOIUrl":"https://doi.org/10.1093/plphys/kiaf032","url":null,"abstract":"Photoperiodic regulation of flowering time plays a critical role in plant reproductive success and crop yield. In Arabidopsis thaliana, the expression of the CONSTANS (CO) gene is closely regulated by day length and is modulated by both environmental and endogenous cues for precise control over flowering. Our findings reveal that the phytohormone brassinosteroid (BR) pathway represses flowering by inhibiting the expression of both CO and Flowering Locus T (FT). Additionally, we discovered that BRASSINAZOLE RESISTANT 1 (BZR1), a key transcription factor in the BR signaling pathway, directly binds to the proximal promoter region of CO to suppress its transcription during long days, thus regulating photoperiodic flowering. Genetically, BZR1 acts upstream of CO and FT to delay floral initiation depending on day length. Overall, our study reveals how a molecular module comprising BZR1-CO integrates signals from BR as well as photoperiodicity for appropriate adjustment of flowering time.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"10 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toll/interleukin-1 receptor-only genes contribute to immune responses in maize Toll/白介素-1受体基因参与玉米的免疫应答
IF 7.4 1区 生物学
Plant Physiology Pub Date : 2025-01-23 DOI: 10.1093/plphys/kiaf030
Qiang Zhang, Derong Gao, Lei Tian, Kirstin Feussner, Bin Li, Long Yang, Qin Yang, Yuelin Zhang, Xin Li, Ivo Feussner, Fang Xu
{"title":"Toll/interleukin-1 receptor-only genes contribute to immune responses in maize","authors":"Qiang Zhang, Derong Gao, Lei Tian, Kirstin Feussner, Bin Li, Long Yang, Qin Yang, Yuelin Zhang, Xin Li, Ivo Feussner, Fang Xu","doi":"10.1093/plphys/kiaf030","DOIUrl":"https://doi.org/10.1093/plphys/kiaf030","url":null,"abstract":"Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR-nucleotide-binding (NB)-leucine-rich repeat (LRR)-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are three conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3. A genome-wide scan for TIR genes and comparative analysis revealed that these genes exhibit low sequence diversity and do not show copy number variation among 26 diverse inbred lines. ZmTIR1 and ZmTIR3, but not ZmTIR2, specifically trigger cell death and defense gene expression when overexpressed in Nicotiana benthamiana leaves. These responses depend on the critical glutamic acid and cysteine residues predicted to be essential for TIR-mediated NADase and 2’,3’-cAMP/cGMP synthetase activity, respectively, as well as the key TIR downstream regulator Enhanced Disease Susceptibility 1 (EDS1). Overexpression of ZmTIR3 in N. benthamiana produces signaling molecules, including 2’cADPR, 2’,3’-cAMP and 2’,3’-cGMP, a process that requires the enzymatic glutamic acid and cysteine residues of ZmTIR3. ZmTIR expression in maize is barely detectable under normal conditions, but is substantially induced by different pathogens. Importantly, the maize Zmtir3 knockout mutant exhibits enhanced susceptibility to the fungal pathogen Cochliobolus heterostrophus, highlighting the role of ZmTIR3 in maize immunity. Overall, our results unveil the function of the maize ZmTIRs. We propose that the pathogen-inducible ZmTIRs play an important role in maize immunity, likely through their enzymatic activity and via EDS1-mediated signaling.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"32 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sphingolipid remodeling in the plasma membrane is essential for osmotic stress tolerance in Arabidopsis 质膜鞘脂重塑对拟南芥的渗透胁迫耐受性至关重要
IF 7.4 1区 生物学
Plant Physiology Pub Date : 2025-01-23 DOI: 10.1093/plphys/kiaf031
Yong-Kang Li, Yu-Meng Zhang, Guang-Yi Dai, Yi-Li Chen, Ding-Kang Chen, Nan Yao
{"title":"Sphingolipid remodeling in the plasma membrane is essential for osmotic stress tolerance in Arabidopsis","authors":"Yong-Kang Li, Yu-Meng Zhang, Guang-Yi Dai, Yi-Li Chen, Ding-Kang Chen, Nan Yao","doi":"10.1093/plphys/kiaf031","DOIUrl":"https://doi.org/10.1093/plphys/kiaf031","url":null,"abstract":"Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear. Here, we characterized the role of the glucosylceramidase (GCD) AtGCD1 (encoded by At1g33700) in sphingolipid remodeling and acclimation to osmotic stress in Arabidopsis (Arabidopsis thaliana). AtGCD1–AtGCD4 are Arabidopsis homologs of human nonlysosomal glucosylceramidase. We determined that AtGCD1 functions as a glucosylceramidase and localizes to the plasma membrane and that recombinant AtGCD1 has no substrate preference for acyl chain length. Moreover, AtGCD1 and AtGCD3 (At4g10060) are essential for osmotic stress tolerance in Arabidopsis. In cells treated with mannitol, AtGCD1 and AtGCD3 hydrolyzed glucosylceramides to ceramides, leading to decreased glucosylceramide contents and increased glycosyl inositol phosphoceramide contents. We observed a substantial change in the molecular order of lipids and membrane tension at the plasma membrane of the Arabidopsis gcd1 gcd3 double mutant, indicating that glucosylceramidases compensate for changes in membrane properties to stabilize the membrane during osmotic stress. Notably, we found that loss of GCD1 and GCD3 enhanced plant resistance to beet armyworm (Spodoptera exigua). Our results suggest that sphingolipid remodeling regulates the physicochemical properties of cellular membranes during plant stress responses.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"1 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic photosynthetic labeling and carbon-positional mass spectrometry monitor in vivo Rubisco carbon assimilation rates. 动态光合标记和碳定位质谱监测体内Rubisco碳同化率。
IF 7.4 1区 生物学
Plant Physiology Pub Date : 2025-01-21 DOI: 10.1093/plphys/kiaf020
Yogeswari Rajarathinam,Luisa Wittemeier,Kirstin Gutekunst,Martin Hagemann,Joachim Kopka
{"title":"Dynamic photosynthetic labeling and carbon-positional mass spectrometry monitor in vivo Rubisco carbon assimilation rates.","authors":"Yogeswari Rajarathinam,Luisa Wittemeier,Kirstin Gutekunst,Martin Hagemann,Joachim Kopka","doi":"10.1093/plphys/kiaf020","DOIUrl":"https://doi.org/10.1093/plphys/kiaf020","url":null,"abstract":"RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions. Hence, RUBISCO activity that fixes carbon into the 1-C position of 3PGA and Calvin-Benson-Bassham (CBB) cycle activities that redistribute carbon into its 2-C and 3-C positions are not resolved. This study aims to develop technology that differentiates between these activities. In source fragmentation of gas chromatography-mass spectrometry (GC-MS) enables paired isotopologue distribution analyses of fragmented substructures and the complete metabolite structure. GC-MS measurements after dynamic photosynthetic 13CO2 labelling allowed quantification of the 13C fractional enrichment (E13C) and molar carbon assimilation rates (A13C) at carbon position 1-C of 3PGA by combining E13C from carbon positions 2,3-C2 and 1,2,3-C3 with quantification of 3PGA concentrations. We validated the procedure using two GC-time of flight (TOF)-MS instruments, operated at nominal or high mass resolution, and tested the expected 3PGA positional labelling by in vivo glycolysis of positional labelled glucose isotopomers. Mutant analysis of the highly divergent GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASEs (GAPDH1 and 2) from Synechocystis sp. PCC 6803 revealed full inactivation of the CBB cycle with maintained RUBISCO activity in Δgapdh2 and a CBB cycle modulating role of GAPDH1 under fluctuating CO2 supply. RUBISCO activity in the CBB-deficient Δgapdh2 can re-assimilate CO2 released by catabolic pathways. We suggest that RUBISCO activity in Synechocystis can scavenge carbon lost through the pentose phosphate pathway or other cellular decarboxylation reactions.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"6 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization 肌动蛋白细胞骨架调节危险相关的分子模式信号和PEP1受体1内化
IF 7.4 1区 生物学
Plant Physiology Pub Date : 2025-01-17 DOI: 10.1093/plphys/kiaf023
Hongping Qian, Xinxiu Zuo, Yi Man, Changwen Xu, Pengyun Luo, Lijuan Yao, Ruohan Geng, Binghe Wang, Shihui Niu, Jinxing Lin, Yaning Cui
{"title":"The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization","authors":"Hongping Qian, Xinxiu Zuo, Yi Man, Changwen Xu, Pengyun Luo, Lijuan Yao, Ruohan Geng, Binghe Wang, Shihui Niu, Jinxing Lin, Yaning Cui","doi":"10.1093/plphys/kiaf023","DOIUrl":"https://doi.org/10.1093/plphys/kiaf023","url":null,"abstract":"In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity. Here, we demonstrated that the actin cytoskeleton alters the Pep1-triggered immune response. In addition, dual-color total internal reflection fluorescence–structured illumination microscopy (TIRF-SIM) showed that PEPR1 diffusion on the plasma membrane is closely related to the actin cytoskeleton. We performed single-particle tracking to quantify individual protein particles and found that the actin cytoskeleton notably regulates PEPR1 mobility and cluster size. More importantly, we demonstrated that actin filament reconfiguration is sufficient to inhibit Pep1-induced internalization, which alters the immune response. Taken together, these findings suggest that the actin cytoskeleton functions as an integration node for Pep1 signaling and PEPR1 endocytosis.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"70 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The vacuolar phosphatases PAP26 and HIIA2.1 hydrolyze 5’-, 3’-, and 2’-nucleotides derived from RNA degradation 液泡磷酸酶PAP26和HIIA2.1水解来自RNA降解的5 ' -、3 ' -和2 ' -核苷酸
IF 7.4 1区 生物学
Plant Physiology Pub Date : 2025-01-17 DOI: 10.1093/plphys/kiaf025
Nabila Firdoos, Lukas Krumwiede, Nieves Medina Escobar, Leonie Treichel, Lisa Fischer, Marco Herde, Claus-Peter Witte
{"title":"The vacuolar phosphatases PAP26 and HIIA2.1 hydrolyze 5’-, 3’-, and 2’-nucleotides derived from RNA degradation","authors":"Nabila Firdoos, Lukas Krumwiede, Nieves Medina Escobar, Leonie Treichel, Lisa Fischer, Marco Herde, Claus-Peter Witte","doi":"10.1093/plphys/kiaf025","DOIUrl":"https://doi.org/10.1093/plphys/kiaf025","url":null,"abstract":"The vacuole is an important site for RNA degradation. Autophagy delivers RNA to the vacuole, where the vacuolar T2 RNase Ribonuclease 2 (RNS2) plays a major role in RNA catabolism. The presumed products of RNS2 activity are 3’-nucleoside monophosphates (3’-NMPs). Vacuolar phosphatases that carry out 3’-NMP hydrolysis are required to metabolize 3’-NMPs, but the specific players remain unknown. Using a mutant of RNS2 and mutants of the Autophagy-Related Genes 5 and 9 (atg5 and atg9), we confirmed that 3’-NMPs are products of vacuolar RNS2-mediated RNA degradation in Arabidopsis (Arabidopsis thaliana). Moreover, we identified Purple Acid Phosphatase 26 (PAP26) and Haloacid Dehalogenase (HAD) IIA2.1 (HIIA2.1) as vacuolar 3'-NMP phosphatases. Based on phylogenetic analysis, we propose systematic nomenclature for HADIIA enzymes. PAP26 and HIIA2.1 differ in their NMP specificity and activity in vitro. However, the hiia2.1 pap26 double mutant, but generally not the respective single mutants, accumulates 3’-NMPs in addition to 5’-NMPs and, surprisingly, also 2’-NMPs. These findings suggest that PAP26 and HIIA2.1 have overlapping NMP substrate spectra in vivo. Excess 3’- and 2’-NMPs accumulate in plants exposed to a prolonged night, presumably because carbon limitation enhances autophagy-mediated vacuolar RNA degradation. We conclude that vacuolar RNA catabolism releases 3’-NMPs as well as 2’-NMPs through RNS2 and other RNases that also generate 5’-NMPs. PAP26 and HIIA2.1 are required to dephosphorylate these NMPs so that they can enter general nucleotide metabolism outside the vacuole.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"77 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transcription factor SlLBD40 regulates seed germination by inhibiting cell wall remodeling enzymes during endosperm weakening 转录因子SlLBD40在胚乳弱化过程中通过抑制细胞壁重塑酶调控种子萌发
IF 7.4 1区 生物学
Plant Physiology Pub Date : 2025-01-17 DOI: 10.1093/plphys/kiaf022
Jialong Zhang, Lun Liu, Danhui Dong, Jiayi Xu, Hongxin Li, Qilin Deng, Yan Zhang, Wei Huang, Haijun Zhang, Yang-Dong Guo
{"title":"The transcription factor SlLBD40 regulates seed germination by inhibiting cell wall remodeling enzymes during endosperm weakening","authors":"Jialong Zhang, Lun Liu, Danhui Dong, Jiayi Xu, Hongxin Li, Qilin Deng, Yan Zhang, Wei Huang, Haijun Zhang, Yang-Dong Guo","doi":"10.1093/plphys/kiaf022","DOIUrl":"https://doi.org/10.1093/plphys/kiaf022","url":null,"abstract":"Uniform seed germination is crucial for consistent seedling emergence and efficient seedling production. In this study, we identified a seed-expressed protein in tomato (Solanum lycopersicum), lateral organ boundaries domain 40 (SlLBD40), that regulates germination speed. CRISPR/Cas9-generated SlLBD40 knockout mutants exhibited faster germination due to enhanced seed imbibition, independent of the seed coat. The expression of SlLBD40 was induced during the imbibition process, particularly in the micropylar endosperm, suggesting its role in endosperm weakening. Gene ontology analysis of RNA-seq data indicated that differentially expressed genes were enriched in cell wall-related processes. SlLBD40 directly targeted genes encoding cell wall remodeling enzymes implicated in endosperm weakening, including expansin 6 (SlEXP6), xyloglucan endotransglucosylase/hydrolase 23 (SlXTH23), and endo-β-mannanase 1 (SlMAN1). Our findings shed light on the role of endosperm weakening in regulating seed germination and propose potential gene targets for improving germination in species constrained by endosperm strength.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"18 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PROCERA interacts with JACKDAW in gibberellin-enhanced source-sink sucrose partitioning in tomato PROCERA与JACKDAW在赤霉素增强的番茄源库蔗糖分配中的相互作用
IF 7.4 1区 生物学
Plant Physiology Pub Date : 2025-01-17 DOI: 10.1093/plphys/kiaf024
Yufei Liang, Jingyi Zhao, Rui Yang, Jiayu Bai, Wanxing Hu, Lixia Gu, Zhaoyuan Lian, Heqiang Huo, Jia Guo, Haijun Gong
{"title":"PROCERA interacts with JACKDAW in gibberellin-enhanced source-sink sucrose partitioning in tomato","authors":"Yufei Liang, Jingyi Zhao, Rui Yang, Jiayu Bai, Wanxing Hu, Lixia Gu, Zhaoyuan Lian, Heqiang Huo, Jia Guo, Haijun Gong","doi":"10.1093/plphys/kiaf024","DOIUrl":"https://doi.org/10.1093/plphys/kiaf024","url":null,"abstract":"Proper regulation of the source-sink relationship is an effective way to increase crop yield. Gibberellin (GA) is an important regulator of plant growth and development, and physiological evidence has demonstrated that GA can promote source-sink sucrose partitioning. However, the underlying molecular mechanism remains unclear. Here, we used a combination of physiological and molecular approaches to identify the components involved in GA-enhanced source-sink sucrose partitioning in tomato (Solanum lycopersicum). GA treatment increased the sucrose export rate from source leaves and the sucrose level in young leaves (sink organ). GA-mediated enhancement of source-sink sucrose partitioning depended on SlPROCERA (SlPRO), the DELLA protein in tomato. Sucrose transporter 1 (SlSUT1) was involved in phloem sucrose loading. SlJACKDAW (SlJKD) was identified as an interaction partner of SlPRO. SlJKD negatively regulated the sucrose export rate from source leaves and could directly bind to the promoter of SlSUT1 and repress its expression, while SlPRO enhanced the transcription repression function of SlJKD. This study reveals the molecular mechanism by which GA promotes source-sink sucrose partitioning in tomato and provides potential targets for source-sink relationship optimization.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"37 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatty acid desaturase 3-mediated α-linolenic acid biosynthesis in plants 脂肪酸去饱和酶3介导的植物α-亚麻酸生物合成
IF 7.4 1区 生物学
Plant Physiology Pub Date : 2025-01-17 DOI: 10.1093/plphys/kiaf012
Mohammad Fazel Soltani Gishini, Pradeep Kachroo, David Hildebrand
{"title":"Fatty acid desaturase 3-mediated α-linolenic acid biosynthesis in plants","authors":"Mohammad Fazel Soltani Gishini, Pradeep Kachroo, David Hildebrand","doi":"10.1093/plphys/kiaf012","DOIUrl":"https://doi.org/10.1093/plphys/kiaf012","url":null,"abstract":"Omega (ω)-3 fatty acids (FAs) are essential components of cell membranes that also serve as precursors of numerous regulatory molecules. α-linolenic acid (ALA), one of the most important ω3 FAs in plants, is synthesized in both the plastid and extraplastidial compartments. FA Desaturase (FAD) 3 is an extraplastidial enzyme that converts linoleic acid (LA) to ALA. Phylogenetic analysis suggested that FAD3 proteins are distinct from FAD7 and FAD8 desaturases, which convert LA to ALA in plastids. Structural analysis of FAD3 proteins indicated a positive relationship between enzymatic activity and transmembrane pore length and width. An inverse relationship between temperature and ALA biosynthesis was also evident, with ALA accumulation decreasing with increasing temperature. These findings suggest that certain FAD3 enzymes are more effective at converting LA to ALA than others. This information could potentially be used to engineer crop plants with higher levels of ALA.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"45 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transcription factor GmFULc regulates soybean plant height by binding the promoter of a gibberellin-responsive gene 转录因子GmFULc通过结合赤霉素应答基因的启动子来调节大豆植株高度
IF 7.4 1区 生物学
Plant Physiology Pub Date : 2025-01-17 DOI: 10.1093/plphys/kiaf021
Jingzhe Sun, Xiaoming Zhang, Junhang Feng, Xiaofei Ma, Yujia Ji, Shujun Chen, Jihui Li, Dongmei Li, Xiujun Wang, Lin Zhao
{"title":"The transcription factor GmFULc regulates soybean plant height by binding the promoter of a gibberellin-responsive gene","authors":"Jingzhe Sun, Xiaoming Zhang, Junhang Feng, Xiaofei Ma, Yujia Ji, Shujun Chen, Jihui Li, Dongmei Li, Xiujun Wang, Lin Zhao","doi":"10.1093/plphys/kiaf021","DOIUrl":"https://doi.org/10.1093/plphys/kiaf021","url":null,"abstract":"Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield. FRUITFULLc (GmFULc) is a MADS-box transcription factor that acts as a growth promoter in soybean; however, the mechanism by which GmFULc regulates soybean height is unknown. This study revealed that GmFULc:GmFULc (the expression of the GmFULc gene driven by its native promoter) soybeans exhibit increased plant height and longer internodes. Conversely, soybean plants containing fulc mutations showed reduced plant height and shortened internodes. Chromatin immunoprecipitation-qPCR revealed GmFULc promotes the expression of gibberellic acid-stimulated Arabidopsis 14 (GmGASA14) and GmGASA32 by directly binding to G-boxes in their promoter regions, leading to notably increased expression of GmGASA14 and GmGASA32 in GmFULc:GmFULc soybean plants and reduced expression in soybean plants containing the fulc-2 mutation. The GmFULc-mediated enhanced expression of GmGASA14 and GmGASA32 increased the gibberellin signal, which may have inhibited gibberellin synthesis by increasing gibberellin 2-oxidase (GmGA2ox) expression and decreasing GA20ox expression. Our findings suggest that GmFULc promoted the expression of GmGASA genes by directly binding to G-boxes in their promoters to regulate soybean plant height.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"30 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信