Plant PhysiologyPub Date : 2024-12-21DOI: 10.1093/plphys/kiae663
João G P Vieira, Gustavo T Duarte, Carlos H Barrera-Rojas, Cleverson C Matiolli, Américo J C Viana, Raphael de A Campos, Lucas E D Canesin, Renato Vicentini, Fabio T S Nogueira, Michel Vincentz
{"title":"Regulation of abscisic acid receptor mRNA stability: involvement of microRNA5628 in PYL6 transcript decay","authors":"João G P Vieira, Gustavo T Duarte, Carlos H Barrera-Rojas, Cleverson C Matiolli, Américo J C Viana, Raphael de A Campos, Lucas E D Canesin, Renato Vicentini, Fabio T S Nogueira, Michel Vincentz","doi":"10.1093/plphys/kiae663","DOIUrl":"https://doi.org/10.1093/plphys/kiae663","url":null,"abstract":"Phytohormone signaling is fine-tuned by regulatory feedback loops. The phytohormone abscisic acid (ABA) plays key roles in plant development and abiotic stress tolerance. PYRABACTIN RESISTENCE 1/PYR1-LIKE/REGULATORY COMPONENT OF ABA RECEPTOR (PYR/PYL/RCAR) receptors sense ABA, and in turn, ABA represses their expression. Conversely, ABA induces expression of type 2C PROTEIN PHOSPHATASES (PP2C) genes, which negatively regulate the ABA signaling pathway. This regulatory feedback scheme is likely important for modulating ABA signaling. Here, we provide insight into the mechanisms underlying the ABA-induced repression of PYR/PYL/RCAR expression in Arabidopsis (Arabidopsis thaliana). ABA time course analyses revealed strong and sustained repression of PYR/PYL/RCARs, suggesting that receptor gene regulation is an important step in resetting the ABA signaling pathway. Cordycepin-induced transcription inhibition showed that PYL1/4/5/6 mRNA destabilization is involved in the ABA-induced repression of these genes. Furthermore, genetic evidence indicated that decapping may play a role in PYL4/5/6 mRNA decay. We also provide evidence that the Arabidopsis-specific microRNA5628 (miR5628), which is transiently induced by the ABA core signaling pathway, guides PYL6 transcript cleavage in response to ABA. After cleavage, the resulting 5’- and 3’-cleaved fragments of PYL6 mRNA may be degraded by the XRN4 exoribonuclease. miR5628 is an evolutionary novelty that may enhance PYL6 mRNA degradation, along with decapping and XRN4 activity. Thus, regulating the stability of PYR/PYL/RCAR transcripts maintains ABA signaling homeostasis.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"24 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2024-12-21DOI: 10.1093/plphys/kiae654
Arkadipta Bakshi, Simon Gilroy
{"title":"Calcium signaling in hypoxic response","authors":"Arkadipta Bakshi, Simon Gilroy","doi":"10.1093/plphys/kiae654","DOIUrl":"https://doi.org/10.1093/plphys/kiae654","url":null,"abstract":"Plants can experience a lack of oxygen due to environmental conditions such as flooding events or intense microbial blooms in the soil, and from their own metabolic activities. The associated limit on aerobic respiration can be fatal. Therefore, plants have evolved sensing systems that monitor oxygen levels and trigger a suite of metabolic, physiological and developmental responses to endure, or potentially escape, these oxygen limiting conditions. Low oxygen stress has long been known to trigger changes in cytosolic Ca2+ levels in plants and recent work has seen some major steps forward in characterizing these events as part of a Ca2+-based signaling system through: (1) defining how hypoxia may trigger and then shape the dynamics of these Ca2+ signals and, (2) identifying a host of the downstream elements that allow Ca2+ to regulate a wide-ranging network of hypoxia responses. Calcium transporters such as the CAX family of Ca2+/H+ antiporters at the tonoplast have emerged as important components of the system that forms hypoxia-related Ca2+ signals. Downstream lies a web of Ca2+-responsive proteins such as the calmodulin like proteins (CMLs), Ca2+-dependent kinases (CPKs), the calcineurin-B like proteins (CBLs) along with their interacting kinases (CIPKs). A host of other regulators such as reactive oxygen species and lipid-mediated signals then act in parallel to the Ca2+-dependent events to closely control and coordinate the myriad responses that characterize the plant’s low oxygen response.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"52 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2024-12-20DOI: 10.1093/plphys/kiae674
Yuzhou Yang, Que Kong, Zhiming Ma, Peng Ken Lim, Sanjay K Singh, Sitakanta Pattanaik, Marek Mutwil, Yansong Miao, Ling Yuan, Wei Ma
{"title":"Phase separation of MYB73 regulates seed oil biosynthesis in Arabidopsis.","authors":"Yuzhou Yang, Que Kong, Zhiming Ma, Peng Ken Lim, Sanjay K Singh, Sitakanta Pattanaik, Marek Mutwil, Yansong Miao, Ling Yuan, Wei Ma","doi":"10.1093/plphys/kiae674","DOIUrl":"https://doi.org/10.1093/plphys/kiae674","url":null,"abstract":"<p><p>MYB family transcription factors (TFs) play crucial roles in plant development, metabolism, and responses to various stresses. However, whether MYB TFs are involved in regulating fatty acid biosynthesis in seeds remains largely elusive. Here, we demonstrated that transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing MYB73 exhibit altered FATTY ACID ELONGATION1 (FAE1) expression, seed oil content, and seed fatty acid composition. Electrophoretic mobility shift assays (EMSAs) showed that FAE1 is a direct target of MYB73, and functional assays revealed that MYB73 represses FAE1 promoter activity. Transcriptomic analysis of the MYB73-overexpressing plants detected significant changes in the expression of genes involved in fatty acid biosynthesis and triacylglycerol assembly. Furthermore, MYB73 expression was responsive to abscisic acid (ABA), and ABA responsive element binding factor 2 (ABF2) directly bound to the ABA-responsive element (ABRE) in the MYB73 promoter to activate its expression. Additionally, we determined that MYB73 exhibits the hallmarks of an intrinsically disordered protein and forms phase-separated condensates with liquid-like characteristics, which are important in regulating target gene expression. Together, our findings suggest that MYB73 condensate formation likely fine-tunes seed oil biosynthesis.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The calcium-dependent protein kinase CmaCPK4 regulates sex determination in pumpkin (Cucurbita maxima D.)","authors":"Chaojie Wang, Yunli Wang, Guichao Wang, Ke Zhang, Zhe Liu, Xiaopeng Li, Wenlong Xu, Zheng Li, Shuping Qu","doi":"10.1093/plphys/kiae666","DOIUrl":"https://doi.org/10.1093/plphys/kiae666","url":null,"abstract":"Pumpkin (Cucurbita maxima D.) is typically monoecious with individual male and female flowers, and its yield is associated with the degree of femaleness, i.e. the ratio of female to male flowers produced by the plant. Subgynoecy represents a sex form with a high degree of femaleness, but the regulatory mechanisms in pumpkin remain poorly understood. In this study, using the F2 population crossed from the subgynoecious line 2013-12 and the monoecious line 9-6, we initially identified a recessive locus to control the subgynoecious trait, and named it sg1. After bulked segregant analysis with whole-genome resequencing (BSA-seq) and molecular marker linkage analysis, the sg1 locus was mapped to pumpkin chromosome 2. Genetic sequence analysis found a pumpkin calcium-dependent protein kinase (CPK) gene, CmaCPK4, in the mapping interval as the candidate gene. A retrotransposon insertion identified within the promoter elevated CmaCPK4 expression in 2013-12. Morphological characterization of near-isogenic lines (NILs) containing the sg1 allele showed increases in the ratio of female flowers and high ethylene contents in terminal buds compared to the receptor parent. Heterologous overexpression of CmaCPK4 significantly increased the ratio of female flowers in cucumber (Cucumis sativus). Furthermore, CmaCPK4 directly interacts with and phosphorylates 1-aminocyclopropane-1-carboxylate synthase 5 (CmaACS5) and 1-aminocyclopropane-1-carboxylate synthase 7 (CmaACS7), resulting in increased ethylene content in 2013-12, which affected pumpkin sex determination. These findings provide insights into the role of the CmaCPK4-CmaACS5/CmaACS7 module in ethylene-induced sex determination in pumpkin.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"31 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A data-integrative modeling approach accurately characterizes the effects of mutations on Arabidopsis lipid metabolism.","authors":"Sandra Correa Córdoba, Asdrúbal Burgos, Álvaro Cuadros-Inostroza, Ke Xu, Yariv Brotman, Zoran Nikoloski","doi":"10.1093/plphys/kiae615","DOIUrl":"https://doi.org/10.1093/plphys/kiae615","url":null,"abstract":"<p><p>Collections of insertional mutants have been instrumental for characterizing the functional relevance of genes in different model organisms, including Arabidopsis (Arabidopsis thaliana). However, mutations may often result in subtle phenotypes, rendering it difficult to pinpoint the function of a knocked-out gene. Here, we present a data-integrative modeling approach that enables predicting the effects of mutations on metabolic traits and plant growth. To test the approach, we gathered lipidomics data and physiological read-outs for a set of 64 Arabidopsis lines with mutations in lipid metabolism. Use of flux sums as a proxy for metabolite concentrations allowed us to integrate the relative abundance of lipids and facilitated accurate predictions of growth and biochemical phenotype in approximately 73% and 76% of the mutants, respectively, for which phenotypic data were available. Likewise, we showed that this approach can pinpoint alterations in metabolic pathways related to silent mutations. Therefore, our study paves the way for coupling model-driven characterization of mutant lines from different mutagenesis approaches with metabolomic technologies, as well as for validating knowledge structured in large-scale metabolic networks of plants and other species.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2024-12-18DOI: 10.1093/plphys/kiae659
Aleca M Borsuk, Josh M Randall, Jennifer Richburg, Kyra G Montes, Erika J Edwards, Craig R Brodersen
{"title":"Palisade cell geometry in relation to leaf optical and photosynthetic properties in Viburnum.","authors":"Aleca M Borsuk, Josh M Randall, Jennifer Richburg, Kyra G Montes, Erika J Edwards, Craig R Brodersen","doi":"10.1093/plphys/kiae659","DOIUrl":"https://doi.org/10.1093/plphys/kiae659","url":null,"abstract":"<p><p>The optical properties of lobed palisade mesophyll cells remain poorly understood despite their presence in diverse taxa and the critical role of the palisade layer in leaf-light interactions and carbon assimilation. Using micro-computed tomography, 3D ray tracing simulations, and physiological experiments, we tested the interactions between palisade cell geometry, chloroplast localization, light directional quality, and leaf optical and photosynthetic performance in the model taxon Viburnum. Simulations showed that lobed cells shifted between absorptance- or transmittance-dominated states depending on chloroplast localization, irrespective of light directional quality. In contrast, columnar palisade optics were driven by light directional quality, with absorptance-dominated properties under diffuse light and transmittance-dominated properties under direct light, irrespective of chloroplast localization. Lobed palisade cells in planta were less densely packed yet more productive on a per cell basis than columnar palisade cells, resulting in interspecific conservation of maximum carbon assimilation rate per unit leaf tissue. For the Viburnum species studied, our results indicate a 'many-to-one' mapping of multiple palisade cell forms to a common rate of photosynthetic productivity per unit tissue. This work highlights the dynamic relationship between palisade mesophyll form and function and informs the anatomical basis of plant carbon assimilation.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant response to intermittent heat stress involves modulation of mRNA translation efficiency.","authors":"Arnaud Dannfald, Marie-Christine Carpentier, Rémy Merret, Jean-Jacques Favory, Jean-Marc Deragon","doi":"10.1093/plphys/kiae648","DOIUrl":"https://doi.org/10.1093/plphys/kiae648","url":null,"abstract":"<p><p>Acquired thermotolerance (also known as priming) is the ability of cells or organisms to survive acute heat stress if preceded by a milder one. In plants, acquired thermotolerance has been studied mainly at the transcriptional level, including recent descriptions of sophisticated regulatory circuits that are essential for this learning capacity. Here, we tested the involvement of polysome-related processes (translation and cotranslational mRNA decay (CTRD)) in Arabidopsis (Arabidopsis thaliana) thermotolerance using two heat stress regimes with and without a priming event. We found that priming is essential to restore the general translational potential of plants shortly after acute heat stress. We observed that mRNAs not involved in heat stress suffered from reduced translation efficiency at high temperatures, whereas heat stress-related mRNAs were translated more efficiently under the same condition. We also showed that the induction of the unfolded protein response (UPR) pathway in acute heat stress is favored by a previous priming event and that, in the absence of priming, ER-translated mRNAs become preferential targets of CTRD. Finally, we present evidence that CTRD can specifically regulate more than a thousand genes during heat stress and should be considered as an independent gene regulatory mechanism.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142838576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2024-12-17DOI: 10.1093/plphys/kiae605
Núria S Coll, Miguel Moreno-Risueno, Lucia C Strader, Alexandra V Goodnight, Rosangela Sozzani
{"title":"Advancing our understanding of root development: Technologies and insights from diverse studies.","authors":"Núria S Coll, Miguel Moreno-Risueno, Lucia C Strader, Alexandra V Goodnight, Rosangela Sozzani","doi":"10.1093/plphys/kiae605","DOIUrl":"https://doi.org/10.1093/plphys/kiae605","url":null,"abstract":"<p><p>Understanding root development is critical for enhancing plant growth and health, and advanced technologies are essential for unraveling the complexities of these processes. In this review, we highlight select technological innovations in the study of root development, with a focus on the transformative impact of single-cell gene expression analysis. We provide a high-level overview of recent advancements, illustrating how single-cell RNA sequencing (scRNA-seq) has become a pivotal tool in plant biology. scRNA-seq has revolutionized root biology by enabling detailed, cell-specific analysis of gene expression. This has allowed researchers to create comprehensive root atlases, predict cell development, and map gene regulatory networks (GRNs) with unprecedented precision. Complementary technologies, such as multimodal profiling and bioinformatics, further enrich our understanding of cellular dynamics and gene interactions. Innovations in imaging and modeling, combined with genetic tools like CRISPR, continue to deepen our knowledge of root formation and function. Moreover, the integration of these technologies with advanced biosensors and microfluidic devices has advanced our ability to study plant-microbe interactions and phytohormone signaling at high resolution. These tools collectively provide a more comprehensive understanding of root system architecture and its regulation by environmental factors. As these technologies evolve, they promise to drive further breakthroughs in plant science, with substantial implications for agriculture and sustainability.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142838572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The hexose transporters CsHT3 and CsHT16 regulate postphloem transport and fruit development in cucumber.","authors":"Jintao Cheng, Suying Wen, Kexin Li, Yixuan Zhou, Mengtian Zhu, H Ekkehard Neuhaus, Zhilong Bie","doi":"10.1093/plphys/kiae597","DOIUrl":"https://doi.org/10.1093/plphys/kiae597","url":null,"abstract":"<p><p>Hexoses are essential for plant growth and fruit development. However, the precise roles of hexose/H+ symporters in postphloem sugar transport and cellular sugar homeostasis in rapidly growing fruits remain elusive. To elucidate the functions of hexose/H+ symporters in cucumber (Cucumis sativus L.) fruits, we conducted comprehensive analyses of their tissue-specific expression, localization, transport characteristics, and physiological functions. Our results demonstrate that CsHT3 (C. sativus hexose transporter), CsHT12, and CsHT16 are the primary hexose/H+ symporters expressed in cucumber fruits. CsHT3 and CsHT16 are localized in the sieve element-companion cell during the ovary and early fruit development stages. As the fruit develops and expands, the expression of both symporters shifts to phloem parenchyma cells. The CsHT16 knockout mutant produces shorter fruits with a larger circumference, likely due to impaired sugar and phytohormone homeostasis. Concurrent reduction of CsHT3, CsHT12, and CsHT16 expression leads to decreased fruit size. Conversely, CsHT3 overexpression results in increased fruit size and higher fruit sugar levels. These findings suggest that CsHT16 plays an important role in maintaining sugar homeostasis, which shapes the fruit, while CsHT3, CsHT12, and CsHT16 collectively regulate the supply of carbohydrates required for cucumber fruit enlargement.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142829710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2024-12-16DOI: 10.1093/plphys/kiae665
Yaqi Sun, Yuewen Sheng, Tao Ni, Xingwu Ge, Joscelyn Sarsby, Philip J Brownridge, Kang Li, Nathan Hardenbrook, Gregory F Dykes, Nichola Rockliffe, Claire E Eyers, Peijun Zhang, Lu-Ning Liu
{"title":"Rubisco packaging and stoichiometric composition of the native β-carboxysome in Synechococcus elongatus PCC7942","authors":"Yaqi Sun, Yuewen Sheng, Tao Ni, Xingwu Ge, Joscelyn Sarsby, Philip J Brownridge, Kang Li, Nathan Hardenbrook, Gregory F Dykes, Nichola Rockliffe, Claire E Eyers, Peijun Zhang, Lu-Ning Liu","doi":"10.1093/plphys/kiae665","DOIUrl":"https://doi.org/10.1093/plphys/kiae665","url":null,"abstract":"Carboxysomes are anabolic bacterial microcompartments that play an essential role in CO2 fixation in cyanobacteria. This self-assembling proteinaceous organelle uses a polyhedral shell constructed by hundreds of shell protein paralogs to encapsulate the key CO2-fixing enzymes Rubisco and carbonic anhydrase. Deciphering the precise arrangement and structural organization of Rubisco enzymes within carboxysomes is crucial for understanding carboxysome formation and overall functionality. Here, we employed cryo-electron tomography and subtomogram averaging to delineate the three-dimensional packaging of Rubiscos within β-carboxysomes in the freshwater cyanobacterium Synechococcus elongatus PCC7942 grown under low light. Our results revealed that Rubiscos are arranged in multiple concentric layers parallel to the shell within the β-carboxysome lumen. We also detected Rubisco binding with the scaffolding protein CcmM in β-carboxysomes, which is instrumental for Rubisco encapsulation and β-carboxysome assembly. Using Quantification conCATamer (QconCAT)-based quantitative mass spectrometry, we determined the absolute stoichiometric composition of the entire β-carboxysome. This study provides insights into the assembly principles and structural variation of β-carboxysomes, which will aid in the rational design and repurposing of carboxysome nanostructures for diverse bioengineering applications.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"20 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}