Plant PhysiologyPub Date : 2025-02-20DOI: 10.1093/plphys/kiaf067
Björn Sabelleck, Sohini Deb, Sophie C J Levecque, Matthias Freh, Anja Reinstädler, Pietro D Spanu, Hans Thordal-Christensen, Ralph Panstruga
{"title":"A powdery mildew core effector protein targets the host endosome tethering complexes HOPS and CORVET in barley.","authors":"Björn Sabelleck, Sohini Deb, Sophie C J Levecque, Matthias Freh, Anja Reinstädler, Pietro D Spanu, Hans Thordal-Christensen, Ralph Panstruga","doi":"10.1093/plphys/kiaf067","DOIUrl":"https://doi.org/10.1093/plphys/kiaf067","url":null,"abstract":"<p><p>Powdery mildew fungi are serious pathogens affecting many plant species. Their genomes encode extensive repertoires of secreted effector proteins that suppress host immunity. Here, we revised and analyzed the candidate secreted effector protein (CSEP) effectome of the powdery mildew fungus, Blumeria hordei (Bh). We identified seven putative effectors that are broadly conserved in powdery mildew species, suggesting that they are core effectors of these phytopathogens. We showed that one of these effectors, CSEP0214, interacts with the barley (Hordeum vulgare) vacuolar protein sorting 18 (VPS18) protein, a shared component of the class C core vacuole/endosome tethering (CORVET) and homotypic fusion and protein-sorting (HOPS) endosomal tethering complexes that mediate fusion of early endosomes and multivesicular bodies, respectively, with the central vacuole. Overexpression of CSEP0214 and knockdown of either VPS18, HOPS-specific VPS41 or CORVET-specific VPS8 blocked the vacuolar pathway and the accumulation of the fluorescent vacuolar marker protein (SP)-RFP-AFVY in the endoplasmic reticulum. Moreover, CSEP0214 inhibited the interaction between VPS18 and VPS16, which are both shared components of CORVET as well as HOPS. Additionally, introducing CSEP0214 into barley leaf cells blocked the hypersensitive cell death response associated with resistance gene-mediated immunity, indicating that endomembrane trafficking is required for this process. CSEP0214 expression also prevented callose deposition in cell wall appositions at attack sites and encasements of fungal infection structures. Our results indicate that the powdery mildew core effector CSEP0214 is an essential suppressor of plant immunity.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2025-02-20DOI: 10.1093/plphys/kiaf070
Huihui Bao, Li Yuan, Yongchao Luo, Jinxiu Zhang, Xi Liu, Qiuju Wu, Xiyao Wang, Jitao Liu, Guangtao Zhu
{"title":"The transcription factor WRKY41–FLAVONOID 3′-HYDROXYLASE module fine-tunes flavonoid metabolism and cold tolerance in potato","authors":"Huihui Bao, Li Yuan, Yongchao Luo, Jinxiu Zhang, Xi Liu, Qiuju Wu, Xiyao Wang, Jitao Liu, Guangtao Zhu","doi":"10.1093/plphys/kiaf070","DOIUrl":"https://doi.org/10.1093/plphys/kiaf070","url":null,"abstract":"Cold stress adversely affects crop growth and productivity. Resolving the genetic basis of freezing tolerance is important for crop improvement. Wild potato (Solanum commersonii) exhibits excellent freezing tolerance. However, the genetic factors underlying its freezing tolerance remain poorly understood. Here, we identified flavonoid 3’-hydroxylase (F3’H), a key gene in the flavonoid biosynthesis pathway, as highly expressed in S. commersonii compared to cultivated potato (S. tuberosum L.). Loss of ScF3’H function impaired freezing tolerance in S. commersonii, while ScF3’H overexpression in cultivated potato enhanced its freezing tolerance. Metabolic analysis revealed that F3’H generates more downstream products by adding hydroxyl (-OH) groups to the flavonoid ring structures. These flavonoids enhance reactive oxygen species scavenging, thereby contributing to freezing tolerance. Furthermore, the W-box element in the F3’H promoter plays a critical role in cold responses. Cold-induced transcription factor ScWRKY41 directly binds to the ScF3’H promoter region and recruits histone acetyltransferase 1 (ScHAC1), which enhances histone acetylation at the F3’H locus and activates its transcription. Overall, we identified the cold-responsive WRKY41–F3’H module that enhances freezing tolerance by augmenting the antioxidant capacity of flavonoids. This study reveals a valuable natural gene module for breeding enhanced freezing tolerance in potato and other crops.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"65 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2025-02-20DOI: 10.1093/plphys/kiaf082
Ko Imaizumi, Daisuke Takagi, Kentaro Ifuku
{"title":"Antimycin A induces light hypersensitivity of photosystem II in the presence of quinone QB-site binding herbicides","authors":"Ko Imaizumi, Daisuke Takagi, Kentaro Ifuku","doi":"10.1093/plphys/kiaf082","DOIUrl":"https://doi.org/10.1093/plphys/kiaf082","url":null,"abstract":"Photosynthetic electron transport consists of linear electron flow and two cyclic electron flow (CEF) pathways around photosystem I (PSI) (CEF-PSI). PROTON GRADIENT REGULATION 5 (PGR5)-dependent CEF-PSI is thought to be the major CEF-PSI pathway and an important regulator of photosynthetic electron transfer. Antimycin A (AA) is commonly recognized as an inhibitor of PGR5-dependent CEF-PSI in photosynthesis. Although previous findings imply that AA may also affect photosystem II (PSII), which does not participate in CEF-PSI, these “secondary effects” tend to be neglected, and AA is often used for inhibition of PGR5-dependent CEF-PSI as if it were a specific inhibitor. Here, we investigated the direct effects of AA on PSII using isolated spinach (Spinacia oleracea) PSII membranes, and thylakoid membranes isolated from spinach, Arabidopsis thaliana (wild-type Columbia-0 and PGR5-deficient mutant pgr5hope1), and Chlamydomonas reinhardtii. Measurements of quinone QA− reoxidation kinetics showed that AA directly affects the acceptor side of PSII and inhibits electron transport within PSII. Furthermore, repetitive Fv/Fm measurements revealed that, in the presence of quinone QB-site binding inhibitors, AA treatment results in severe photodamage even from a single-turnover flash. The direct effects of AA on PSII are non-negligible and caution is required when using AA as an inhibitor of PGR5-dependent CEF-PSI. Meanwhile, we found that the commercially available compound AA3, which is a component of the AA complex, inhibits PGR5-dependent CEF-PSI without having notable effects on PSII. Thus, we propose that AA3 should be used instead of AA for physiological studies of the PGR5-dependent CEF-PSI.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"65 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2025-02-20DOI: 10.1093/plphys/kiaf080
Zhenning Teng, Qin Zheng, Yaqiong Peng, Yi Li, Shuan Meng, Bohan Liu, Yan Peng, Meijuan Duan, Dingyang Yuan, Jianhua Zhang, Nenghui Ye
{"title":"Nitrate reductase-dependent nitric oxide production mediates nitrate-conferred salt tolerance in rice seedlings","authors":"Zhenning Teng, Qin Zheng, Yaqiong Peng, Yi Li, Shuan Meng, Bohan Liu, Yan Peng, Meijuan Duan, Dingyang Yuan, Jianhua Zhang, Nenghui Ye","doi":"10.1093/plphys/kiaf080","DOIUrl":"https://doi.org/10.1093/plphys/kiaf080","url":null,"abstract":"Soil salinity is a destructive environmental factor that inhibits plant growth and crop yield. Applying nitrogen fertilizer is a practical method to enhance salt tolerance. However, the underlying mechanisms remain largely unknown. Here, we demonstrated that NO3−-enhanced salt tolerance in rice (Oryza sativa L.) seedlings is mediated by nitrate reductase (NR)-dependent nitric oxide (NO) production. Seedlings grown in nitrate condition (N) exhibited much greater salt tolerance compared to those grown in ammonium nitrate (AN) and ammonium (A) conditions, a pattern also observed in the MADS-box transcription factor 27 (mads27) mutant. NR activity was highly induced by NO3− under both normal and salt stress conditions. Only the double mutant nr1/2 and the triple mutant nr1/2/3 displayed a dramatic reduction in salt tolerance. Application of tungstate suppressed salt tolerance of wild-type seedlings but not the triple mutants. Furthermore, both NO3−-enhanced salt tolerance and salt-induced NO production were totally blocked in triple mutants. However, treatment with exogenous sodium nitroprusside (an NO donor) significantly enhanced salt tolerance in both NIP and the triple mutants. Antioxidant enzyme activities in shoots were significantly inhibited in the triple mutants when compared with NIP. Furthermore, expression of OsAKT1 was specifically induced by NO3− but was inhibited in the roots of triple mutants, resulting in a lower potassium/sodium ratio in NR triple mutants. Our results revealed that NO3−-conferred salt tolerance is mediated by NR-dependent NO production in rice seedlings.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"48 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CYTOKININ DEHYDROGENASE suppression increases intrinsic water use efficiency and photosynthesis in cotton under drought","authors":"Wei Hu, Dimitra A Loka, Yuanyu Luo, Huilian Yu, Shanshan Wang, Zhiguo Zhou","doi":"10.1093/plphys/kiaf081","DOIUrl":"https://doi.org/10.1093/plphys/kiaf081","url":null,"abstract":"Drought reduces endogenous cytokinin (CK) content and disturbs plant water balance and photosynthesis. However, the effect of higher endogenous CK levels (achieved by suppressing cytokinin dehydrogenase (CKX) genes) on plant water status and photosynthesis under drought stress is unknown. Here, pot experiments were conducted with wild-type (WT) cotton (Gossypium hirsutum) and two GhCKX suppression lines (CR-3 and CR-13) to explore the effect of higher endogenous CK levels on leaf water utilization and photosynthesis under drought stress. The GhCKX suppression lines had higher leaf net photosynthetic rate (AN) and intrinsic water use efficiency (iWUE) than WT under drought. This increase was attributed to the decoupling of stomatal conductance (gs) and mesophyll conductance (gm) in the suppression lines in response to drought. GhCKX suppression increased gm but maintained gs relative to WT under drought, and the increased gm was associated with altered anatomical traits, including decreased cell wall thickness (Tcw) and increased surface area of chloroplast-facing intercellular airspaces per unit leaf area (Sc/S), as well as altered cell wall composition, especially decreased cellulose levels. This study provides evidence that increased endogenous CK levels can simultaneously enhance AN and iWUE in cotton under drought conditions and establishes a potential mechanism for this effect. These findings provide a potential strategy for breeding drought-tolerant crops or exploring alternative methods to promote crop drought tolerance.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"47 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2025-02-20DOI: 10.1093/plphys/kiaf083
Jingwei Lu, Kexin Sun, Wenxin Yang, Ying Mou, Ruijie Zhang, Ralf T Voegele, Zhensheng Kang, Jia Guo, Jun Guo
{"title":"The wheat stripe rust effector PstEXLX1 inhibits formate dehydrogenase activity to suppress immunity in wheat","authors":"Jingwei Lu, Kexin Sun, Wenxin Yang, Ying Mou, Ruijie Zhang, Ralf T Voegele, Zhensheng Kang, Jia Guo, Jun Guo","doi":"10.1093/plphys/kiaf083","DOIUrl":"https://doi.org/10.1093/plphys/kiaf083","url":null,"abstract":"Effectors are the most critical weapons that Puccinia striiformis f. sp. tritici (Pst) employs to engage with wheat (Triticum aestivum L.). Discovering important effectors is essential for deciphering the pathogenic mechanisms of Pst. In this study, we identified the expansin-like protein 1from Pst (PstEXLX1), which suppresses cell death in Nicotiana benthamiana. In wheat, knockdown of PstEXLX1 diminished Pst development, whereas PstEXLX1 overexpression enhanced Pst virulence by inhibiting PAMP-triggered immunity (PTI), indicating its importance in pathogenesis. Further investigation revealed that PstEXLX1 stabilizes itself through self-association mediated by its expansin-like domain, which also determines its association with the wheat formate dehydrogenase TaFDH1. Wheat lines overexpressing TaFDH1 exhibited increased resistance to Pst, which was associated with elevated TaFDH1 catalytic activity and induced defense responses. In addition, TaFDH1 activity was strongly inhibited in the presence of PstEXLX1 but became more robust in PstEXLX1-silenced plants, suggesting that PstEXLX1 suppresses TaFDH1 activity. Collectively, our results uncover a strategy employed by Pst to facilitate infection, wherein PstEXLX1 suppresses TaFDH1 activity to repress host immune responses.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"81 1 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2025-02-20DOI: 10.1093/plphys/kiaf076
Zhengzheng Cai, Jieqiong Li, Yuanyuan Su, Lili Zheng, Jianwei Zhang, Miaomiao Zhu, Bingwen Qiu, Lan Kong, Yanfang Ye, Yongbiao Xue, Weiren Wu, Yuanlin Duan
{"title":"The MADS6, JAGGED, and YABBY proteins synergistically determine floral organ development in rice","authors":"Zhengzheng Cai, Jieqiong Li, Yuanyuan Su, Lili Zheng, Jianwei Zhang, Miaomiao Zhu, Bingwen Qiu, Lan Kong, Yanfang Ye, Yongbiao Xue, Weiren Wu, Yuanlin Duan","doi":"10.1093/plphys/kiaf076","DOIUrl":"https://doi.org/10.1093/plphys/kiaf076","url":null,"abstract":"MADS6, JAGGED (JAG), and DROOPING LEAF (DL) are key regulators of floral organ patterns in rice (Oryza sativa); however, how they work together in specifying floral organs remains to be determined. Here, we extensively analyzed the coordination mechanism. Genetic interactions showed that all double/triple mutant combinations of mads6-5 with jag and/or dl-sup7 generated an inflorescence from the spikelet center and lemma-like organs (LLOs) at the periphery, indicating that these genes synergistically promote floral organ specification, inhibit inflorescence initiation, and terminate the floral meristem (FM). Particularly, a fully developed mads6-5 jag spikelet appeared as a large bouquet composed of numerous multi-floral complexes (MFC), while the triple mutant was generally similar to mads6-5 jag, except for a longer pedicel and fewer MFCs. Expression analysis revealed that JAG directly inhibits the transcription of MADS6 in stamens but not in pistils, as JAG and DL co-express in pistils and form a JAG-DL complex, indicating that JAG and DL may coordinate the transcription of MADS6 in sexual organs. Protein interactions revealed that MADS6 and JAG bind to five spikelet-related YABBY proteins (including DL), forming ten heterodimers, suggesting that they may promote floral differentiation through various pathways. However, MADS6 and JAG neither bound together nor formed a heterotrimer with any of the five YABBY proteins. These findings revealed specific synergistic patterns between MADS6, JAGGED, and YABBY proteins, which may contribute to the unique characteristics of rice spikelets and provide insights into the diversity regulation mechanisms of floral specification in plants.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"52 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SHORT INTERNODE1 regulates the activity of MADS transcription factors during rice floral organ development","authors":"Erchao Duan, Xuan Teng, Huan Xu, Wenyu Ma, Desheng Zhang, Rushuang Zhang, Chuanwei Gu, Yipeng Zhang, Rongbo Chen, Xiaoli Chen, Miao Feng, Qibing Lin, Hui Dong, Yuanyan Zhang, Xue Yang, Lei Zhou, Shijia Liu, Xi Liu, Yunlu Tian, Ling Jiang, Haiyang Wang, Yihua Wang, Jianmin Wan","doi":"10.1093/plphys/kiaf034","DOIUrl":"https://doi.org/10.1093/plphys/kiaf034","url":null,"abstract":"Floral organ identity is fundamental to species diversity and reproductive success in plants and is mainly determined by the combinatorial action of MADS homeotic factors. However, despite their conserved roles in specifying floral organ identity, the regulation of MADS transcription factors remains elusive. Here, we show that the rice (Oryza sativa L.) short internode1 (shi1) mutant displays pleiotropic defects in floral organ development, resulting in severe penalties to yield and grain quality. OsSHI1 mRNA accumulates in each floral organ whorl, and OsSHI1 interacts with multiple MADS transcription factors, especially the class E members. This physical interaction occurs through the intrinsic MADS domains, thus regulating the transcriptional activity of the MADS transcription factors. This study provides insight into the molecular and genetic regulatory mechanisms underlying the roles of OsSHI1 and MADS transcription factors in rice floral organ development and, consequently, grain yield and quality.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"5 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143443316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2025-02-10DOI: 10.1093/plphys/kiae534
Ana M Laxalt, Max van Hooren, Teun Munnik
{"title":"Plant PI-PLC signaling in stress and development","authors":"Ana M Laxalt, Max van Hooren, Teun Munnik","doi":"10.1093/plphys/kiae534","DOIUrl":"https://doi.org/10.1093/plphys/kiae534","url":null,"abstract":"Phosphoinositide-specific phospholipase C (PI-PLC) signaling is involved in various plant stress and developmental responses. Though several aspects of this lipid signaling pathway are conserved within animals and plants, clear differences have also emerged. While animal PLC signaling is characterized by the hydrolysis of PIP2 and production of IP3 and DAG as second messengers to activate Ca2+ and PKC signaling, plant PI-PLCs seem to predominantly use PIP as substrate and convert IP2 and DAG into inositolpolyphosphates and phosphatidic acid (PA) as plant second messengers. Sequencing of multiple plant genomes confirmed that plant PLC signaling evolved differently from animals, lacking homologs of the IP3 gated-Ca2+ channel, PKC and TRP channels, and with PLC enzymes resembling the PLCζ subfamily, which lacks the conserved PH domain that binds PIP2. With emerging tools in plant molecular biology, data analyses, and advanced imaging, plant PLC signaling is ready to gain momentum.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"9 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhysiologyPub Date : 2025-02-10DOI: 10.1093/plphys/kiae655
Junbao Pu, Jie Ma, Hang Zhai, Shanshan Wu, Youmei Wang, Christine V Putnis, Lijun Wang, Wenjun Zhang
{"title":"Atomic force microscopy imaging of plant cell walls","authors":"Junbao Pu, Jie Ma, Hang Zhai, Shanshan Wu, Youmei Wang, Christine V Putnis, Lijun Wang, Wenjun Zhang","doi":"10.1093/plphys/kiae655","DOIUrl":"https://doi.org/10.1093/plphys/kiae655","url":null,"abstract":"Plant cell walls are highly dynamic, complex structures composed of multiple biopolymers that form a scaffold surrounding the plant cell. A nanoscale understanding of their architecture, mechanical properties, and formation/degradation dynamics is crucial for revealing structure–function relationships, mechanisms of shape formation, and cell development. Although imaging techniques have been extensively used in recent decades to reveal the structural organization and chemical compositions of cell walls, observing the detailed native architecture and identifying the physicochemical properties of plant cell walls remains challenging. Atomic force microscopy (AFM) is a powerful tool for simultaneously characterizing the morphology, nanomechanical properties, single-molecule interactions, and surface potentials of living biological systems. However, studies employing AFM to investigate plant cell walls have been relatively scarce. In this review, we discuss the latest advancements in AFM for in situ imaging of the multidimensional structure of the cell wall, measuring the mechanical properties of plant tissues or single cells, specific single-molecule recognition of cell wall-related enzymes-polysaccharides, and detecting the Kelvin potential of plant cell walls. We emphasize the fundamental challenges of AFM in characterizing plant cell walls and review potential applications for state-of-the-art AFM-based infrared/Raman spectroscopy toward answering open questions in plant biology.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"32 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}