Xiaoche Wang, Zhiwen Yu, Hai Xu, Hao Chen, Jiahao Lu, Xiang Li, Fengcheng Li, Wenfu Chen, Quan Xu
{"title":"An H3K9me2 demethylase encoded by Jumonji C domain-containing DT2 regulates drought tolerance in rice","authors":"Xiaoche Wang, Zhiwen Yu, Hai Xu, Hao Chen, Jiahao Lu, Xiang Li, Fengcheng Li, Wenfu Chen, Quan Xu","doi":"10.1093/plphys/kiaf280","DOIUrl":null,"url":null,"abstract":"Drought is a major environmental stress limiting global rice (Oryza sativa) production, emphasizing the vital requirement for understanding the genetic basis of drought tolerance. Here, we identified a Jumonji C (JmjC) domain–containing gene, DROUGHT TOLERANCE 2 (DT2), which encodes an H3K9me2 demethylase that regulates drought tolerance in rice. DT2 reduces the H3K9me2 methylation level at the bZIP transcription factor OsZIP26, thereby increasing its expression. OsZIP26 inhibits the abscisic acid (ABA) biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE 2 (NCED2) by activating the basic helix-loop-helix (bHLH) transcription factor bHLH048. DT2 also interacts with the abscisic acid-stress-ripening-inducible 5 (ASR5) protein. ASR5 directly activates the expression of NCED2, and DT2 impairs the ASR5-mediated activation of NCED2. The suppression of NCED2 reduces endogenous ABA levels, resulting in weak drought tolerance in rice. In addition to identifying DT2 as a negative regulator of drought tolerance, our study highlights the role of this JmjC domain–containing protein in drought tolerance and its potential for breeding drought-tolerant rice cultivars.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"70 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf280","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought is a major environmental stress limiting global rice (Oryza sativa) production, emphasizing the vital requirement for understanding the genetic basis of drought tolerance. Here, we identified a Jumonji C (JmjC) domain–containing gene, DROUGHT TOLERANCE 2 (DT2), which encodes an H3K9me2 demethylase that regulates drought tolerance in rice. DT2 reduces the H3K9me2 methylation level at the bZIP transcription factor OsZIP26, thereby increasing its expression. OsZIP26 inhibits the abscisic acid (ABA) biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE 2 (NCED2) by activating the basic helix-loop-helix (bHLH) transcription factor bHLH048. DT2 also interacts with the abscisic acid-stress-ripening-inducible 5 (ASR5) protein. ASR5 directly activates the expression of NCED2, and DT2 impairs the ASR5-mediated activation of NCED2. The suppression of NCED2 reduces endogenous ABA levels, resulting in weak drought tolerance in rice. In addition to identifying DT2 as a negative regulator of drought tolerance, our study highlights the role of this JmjC domain–containing protein in drought tolerance and its potential for breeding drought-tolerant rice cultivars.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.