{"title":"Reliability Assessment of Cu-Al WB Under High Temperature and High Voltage Bias Application","authors":"P. Lall, S. Jung","doi":"10.1115/ipack2020-2678","DOIUrl":"https://doi.org/10.1115/ipack2020-2678","url":null,"abstract":"\u0000 Electronics in automotive underhood environments may be subjected to high temperature in the range of 125–200°C. Transition to electric vehicles has resulted in need for electronics capable of operation under high voltage bias. Automotive electronics has simultaneously transitioned to copper wire-bond from gold wire-bond for first-level interconnections. Copper has a smaller process window and a higher propensity for corrosion in comparison with gold wire bonds. There is scarce information on the reliability of copper wire bonds in presence of high voltage bias under operation at high temperature. In this paper, a multiphysics model for micro galvanic corrosion in the presence of chlorine is introduced. The diffusion cell is used to measure the diffusivity of chlorine in different pH values and different temperatures. Diffusivity measurements are incorporated into the 3D ionic transport model to study the effect of different environmental factors on the transport rate of chlorine. The tafel parameters for copper, aluminum and intermetallics have been extracted through measurements of the polarization curves. The multiple physics of ionic transport in presence of concentration gradient, potential gradient is coupled with the galvanic corrosion.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126039241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liquid-Cooled Heat Sink Optimization for Thermal Imbalance Mitigation in Wide-Bandgap Power Modules","authors":"Raj Sahu, E. Gurpinar, B. Ozpineci","doi":"10.1115/ipack2020-2516","DOIUrl":"https://doi.org/10.1115/ipack2020-2516","url":null,"abstract":"\u0000 Power semiconductor die layout in substrates used in power modules is generally optimized for minimum electrical parasitics (e.g., stray inductance) by considering the minimum spacing between dies for thermal decoupling. The layout assumes sufficient heat spreading and transfer from dies to the cooling structure. For module designs using a direct substrate cooling method, the base plate is removed, leading to a steady-state thermal asymmetry in the power module due to insufficient heat spreading/transfer. This causes significant temperature differences among the devices. Such unintentional thermal asymmetries can lead to undesirable asymmetries in power conversion among semiconductor devices, which impact reliability. This article proposes a thermal imbalance mitigation method that uses evolutionary optimized liquid-cooled heat sinks to improve the thermal loading among devices.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129284394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Nafis, M. Mahmud, Zhongjing Wang, Yuheng Wu, D. Huitink, Yue Zhao
{"title":"System and Component Level Risk Assessment for SiC MOSFET Based Inverter for Traction Application","authors":"B. Nafis, M. Mahmud, Zhongjing Wang, Yuheng Wu, D. Huitink, Yue Zhao","doi":"10.1115/ipack2020-2581","DOIUrl":"https://doi.org/10.1115/ipack2020-2581","url":null,"abstract":"\u0000 Monitoring and predicting temperatures at critical locations of a power electronic system is important for safety, reliability and efficiency. As the market share of vehicles with electric powertrains continue to increase, there is also an important economic cost of failing electronic components. For inverters present in such a drive system, exceeding the temperature limit for certain critical components, such as DC-link capacitors and Silicon carbide MOSFETs, can lead to failure of the system. In such an application, extracting the temperatures using sensors from locations such as dies and capacitors require expensive modifications and poses technical challenges. It is therefore necessary to create a thermal model for the inverter system to estimate the temperature at various components in order to ensure operation within temperature limits. The model approach is also suitable for predicting the effect on the component temperature and reliability of boundary conditions such as coolant, ambient temperature and mission profile. This study assesses the reliability of a 250 kW liquid cooled inverter system designed for traction application. The critical failure areas are the DC-link capacitors, and the SiC MOSFET dies which are rated at 175 degrees C. The system is modeled as a compact system by reasonably considering each component as a lumped capacitance and estimating the thermal resistance using physical dimensions. Results from the model are then compared against experimental data from constant power testing, and good agreement is observed for the cold plate and gate driver temperatures. With the model fidelity established, the model is then used to implement drive cycles from the Environmental Protection Agency for nonroad applications. The resulting temperature profile for each component are a series of temperature peaks and troughs that contribute to damage and failure. Rainflow counting algorithm is then used to quantify the damage per mini-cycles, and used to estimate the predicted life for each component based on their manufacturer provided reliability qualification and the mission profile is executed on the test bench for validation. The results are then used to generate a system risk matrix that relates the failure risk associated with a certain mission profile and the cooling scheme. It therefore demonstrates that an automotive inverter with SiC switching devices can be credibly assessed for failure risk using a compact model that is independent of boundary conditions, in combination with established reliability correlations and techniques.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127980429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Marcinichen, J. Thome, R. L. Amalfi, Filippo Cataldo
{"title":"Experimental Validation and Design Simulations of a Passive Two-Phase Cooling System for Datacenters","authors":"J. Marcinichen, J. Thome, R. L. Amalfi, Filippo Cataldo","doi":"10.1115/ipack2020-2541","DOIUrl":"https://doi.org/10.1115/ipack2020-2541","url":null,"abstract":"\u0000 Thermosyphon cooling systems represent the future of datacenter cooling, and electronics cooling in general, as they provide high thermal performance, reliability and energy efficiency, as well as capture the heat at high temperatures suitable for many heat reuse applications. On the other hand, the design of passive two-phase thermosyphons is extremely challenging because of the complex physics involved in the boiling and condensation processes; in particular, the most important challenge is to accurately predict the flow rate in the thermosyphon and thus the thermal performance. This paper presents an experimental validation to assess the predictive capabilities of JJ Cooling Innovation’s thermosyphon simulator against one independent data set that includes a wide range of operating conditions and system sizes, i.e. thermosyphon data for server-level cooling gathered at Nokia Bell Labs. Comparison between test data and simulated results show good agreement, confirming that the simulator accurately predicts heat transfer performance and pressure drops in each individual component of a thermosyphon cooling system (cold plate, riser, evaporator, downcomer (with no fitting parameters), and eventually a liquid accumulator) coupled with operational characteristics and flow regimes. In addition, the simulator is able to design a single loop thermosyphon (e.g. for cooling a single server’s processor), as shown in this study, but also able to model more complex cooling architectures, where many thermosyphons at server-level and rack-level have to operate in parallel (e.g. for cooling an entire server rack). This task will be performed as future work.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131363844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Gowda, R. Miorini, M. Fish, D. Sharar, P. deBock
{"title":"Silicon Carbide Power Module Co-Designed for Enhanced Thermal and Electrical Performance in Steady State and Transient Conditions","authors":"A. Gowda, R. Miorini, M. Fish, D. Sharar, P. deBock","doi":"10.1115/ipack2020-2608","DOIUrl":"https://doi.org/10.1115/ipack2020-2608","url":null,"abstract":"\u0000 The demand for high power density, therefore high heat dissipation, silicon carbide power electronics modules is propelled by applications such as hybrid transportation and renewable power generation and conversion, among others. Besides a low thermal resistance, these applications require high thermal capacitance to manage transient operations.\u0000 The Package Integrated Cyclone COoler (PICCO) is an additively manufactured, thermal energy storing cooler codesigned by GE Research (GRC) in collaboration with the US Army Research Lab (ARL). The key aspect of PICCO is its capability to swirl a two-phase coolant, i.e. liquid-gas. The centrifugal field creates a radial pressure gradient inducing buoyancy. The strong radial acceleration to which the fluid is subject forces relatively cold flow outward to reach the hot wall, thus boosting the heat transfer, while hot flow and bubbles migrate inward and the two-phase system is nearly isothermal (thermal storage).\u0000 In this paper, we introduce a novel power module package which brings together silicon carbide devices, Power OverLay (POL) wirebondless interconnect, and two-phase swirling flow in an additively manufactured cooler. Various embodiments of this power module structure are presented along with a discussion on their thermal behavior when subjected to a hybrid vehicle drive cycle.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"498 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116539542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Lead Free Solder Joints Subjected to Isothermal Mechanical Shear Cycling","authors":"M. A. Hoque, M. A. Haq, J. Suhling, P. Lall","doi":"10.1115/ipack2020-2692","DOIUrl":"https://doi.org/10.1115/ipack2020-2692","url":null,"abstract":"\u0000 Electronic packages are usually subjected to varying temperature conditions, thus subjecting the package to thermal cyclic loadings. As the different components of the package are made up of materials of different Coefficients of Thermal Expansion (CTE), the thermal cyclic loading brings about fluctuating shear stress to arise within the package, ultimately leading to its failure. It has been seen in previous literature that the recrystallization assisted cracking is a major factor that leads to the failure of solder joints when subjected to thermomechanical cycles. In this study, the authors have tried to determine whether the mechanical shear cycling of aged and non-aged samples of SAC305 lead free solder joints undergo a recrystallization phase before its ultimate failure. Arrays (3 × 3) of SAC305 solder joints of roughly 750μm in diameter were reflowed in between two FR-4 printed circuit boards to create a sandwiched structural sample. The samples were then polished to expose the solder joints. A polarized light microscope was utilized to capture the images of the joints before and after the mechanical cycling and analyzed to observe any changes in the microstructure in the form of recrystallization of the tin grains.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116923318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Analysis of Heat Sinks Designed for Additive Manufacturing","authors":"A. White, D. Saltzman, S. Lynch","doi":"10.1115/ipack2020-2532","DOIUrl":"https://doi.org/10.1115/ipack2020-2532","url":null,"abstract":"\u0000 Significant levels of heat are generated in contemporary electronics, and next generation devices will continue to demand higher power despite decreasing size; therefore, highly effective cooling schemes are needed. Simultaneously, advances in metal additive manufacturing have enabled production of complex heat transfer devices previously impossible to traditionally manufacture. This paper introduces three novel prototypes, originally designed for a prior ASME Student Heat Sink Design Competition sponsored by the K-16 (Heat Transfer in Electronic Devices) technical committee, to demonstrate the abilities of selective laser melting processes in the fabrication of A357 aluminum, EOS aluminum, and copper heat sinks. The performance of each of these prototypes has been determined experimentally, and the effects of specific material and design choices are analyzed. Comparisons of experimental results show that the copper and EOS aluminum prototypes performed better than the A357 aluminum due to increased thermal conductivity; however, the gains in thermal performance from EOS aluminum to copper were much lower despite the large difference in thermal conductivity.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125045549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-Perpendicular Orientation High-G Impact Reliability of Electronics Potted Assemblies","authors":"P. Lall, A. Pandurangan, J. Suhling, John Deep","doi":"10.1115/ipack2020-2648","DOIUrl":"https://doi.org/10.1115/ipack2020-2648","url":null,"abstract":"The Commercial electronics being used in defense and aerospace applications are being exposed to extreme environments including high-G shock conditions, which is not their intended purpose of use. Currently most of the board level testing is being done at horizontal zero degree drop angle. In real life drop scenarios, the angle of drop varies a lot. The damage accrued in the board interconnects and components and solder-joint interconnects, varies with the change in the drop angle. The reliability of the electronic components and interconnections of the solder-joint depends on the effect of drop angle on the test vehicle. The results acquired under these varying drop angle environments would be more relatable to the real life drop scenarios. The test vehicle is a circular PCB and two different configurations of the test vehicle are tested bare and potted. The boards are tested for three different drop angles of 0-degree, 30-degree and 60 degree. Two different shock levels are tested at each drop angle 10,000g and 25,000g. To predict the effect of drop angle on the test assembly, an explicit finite element model of the assembly has been created and simulated.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123936968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Otto, E. Kaulfersch, P. Singh, C. Romano, M. Hildebrandt, S. Rzepka
{"title":"PHM Features for Large Circuit Boards to Be Implemented Into Electric Drivetrain Applications","authors":"A. Otto, E. Kaulfersch, P. Singh, C. Romano, M. Hildebrandt, S. Rzepka","doi":"10.1115/ipack2020-2614","DOIUrl":"https://doi.org/10.1115/ipack2020-2614","url":null,"abstract":"\u0000 Canary structures being used as early warning indicators represent an important tool for condition and health monitoring of electronic components and systems. In this paper, printed circuit boards with canary structures based on SMD 2512 ceramic chip resistors with reduced solder pad sizes were studied. Focus of these investigations was set on thermo-mechanical and mechanical stresses caused by passive thermal cycling as well as by vibrational loads. For this purpose, experimental methods such as deformation analysis and accelerated ageing tests as well as finite element based methods were applied. In addition, an outlook on the implementation of these canary structures into dual inverter electronic control boards for electrical powertrain applications will be given.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128591854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolution of Anand Parameters With Elevated Temperature Aging for SAC Leadfree Alloys","authors":"P. Lall, Vikas Yadav, J. Suhling, David Locker","doi":"10.1115/ipack2019-6577","DOIUrl":"https://doi.org/10.1115/ipack2019-6577","url":null,"abstract":"\u0000 Electronic equipment in automotive, agricultural and avionics applications may be subjected to temperatures in the range of −55 to 200°C during storage, operation and handling in addition to high strain-rates. Strain rates in owing to vibration and shock may range from 1–100 per sec. Temperature in electronic assemblies depends typically on location, energy dissipation and thermal architecture. Some investigators have indicated that the required operating temperature is between −40 to 200°C for automotive electronics located underhood, on engine, on transmission. Prior data indicates the evolution of mechanical properties under extended exposures to high temperatures. However, the constitutive models are often only available for pristine materials only. In this paper, effect of low operating temperatures (−65°C to 0°C) on Anand-model parameters at high strain rates (10–75 per sec) for aged SAC (SAC105 and SAC-Q) solder alloys has been studied. Stress-Strain curves have been obtained at low operating temperatures using tensile tests. The SAC leadfree solder samples were subjected to isothermal-aged up to 4-months at 50°C before testing. Anand Viscoplastic model has been used to describe the material constitutive behavior. Evolution of Anand Model parameters for SAC solder has been investigated. The computed parameters of the experimental data were used to simulate the tensile test and verified the accuracy of the model. A good correlation was found between experimental data and Anand predicted data.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116755850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}