SAC无铅合金Anand参数随高温时效的演变

P. Lall, Vikas Yadav, J. Suhling, David Locker
{"title":"SAC无铅合金Anand参数随高温时效的演变","authors":"P. Lall, Vikas Yadav, J. Suhling, David Locker","doi":"10.1115/ipack2019-6577","DOIUrl":null,"url":null,"abstract":"\n Electronic equipment in automotive, agricultural and avionics applications may be subjected to temperatures in the range of −55 to 200°C during storage, operation and handling in addition to high strain-rates. Strain rates in owing to vibration and shock may range from 1–100 per sec. Temperature in electronic assemblies depends typically on location, energy dissipation and thermal architecture. Some investigators have indicated that the required operating temperature is between −40 to 200°C for automotive electronics located underhood, on engine, on transmission. Prior data indicates the evolution of mechanical properties under extended exposures to high temperatures. However, the constitutive models are often only available for pristine materials only. In this paper, effect of low operating temperatures (−65°C to 0°C) on Anand-model parameters at high strain rates (10–75 per sec) for aged SAC (SAC105 and SAC-Q) solder alloys has been studied. Stress-Strain curves have been obtained at low operating temperatures using tensile tests. The SAC leadfree solder samples were subjected to isothermal-aged up to 4-months at 50°C before testing. Anand Viscoplastic model has been used to describe the material constitutive behavior. Evolution of Anand Model parameters for SAC solder has been investigated. The computed parameters of the experimental data were used to simulate the tensile test and verified the accuracy of the model. A good correlation was found between experimental data and Anand predicted data.","PeriodicalId":199024,"journal":{"name":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evolution of Anand Parameters With Elevated Temperature Aging for SAC Leadfree Alloys\",\"authors\":\"P. Lall, Vikas Yadav, J. Suhling, David Locker\",\"doi\":\"10.1115/ipack2019-6577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Electronic equipment in automotive, agricultural and avionics applications may be subjected to temperatures in the range of −55 to 200°C during storage, operation and handling in addition to high strain-rates. Strain rates in owing to vibration and shock may range from 1–100 per sec. Temperature in electronic assemblies depends typically on location, energy dissipation and thermal architecture. Some investigators have indicated that the required operating temperature is between −40 to 200°C for automotive electronics located underhood, on engine, on transmission. Prior data indicates the evolution of mechanical properties under extended exposures to high temperatures. However, the constitutive models are often only available for pristine materials only. In this paper, effect of low operating temperatures (−65°C to 0°C) on Anand-model parameters at high strain rates (10–75 per sec) for aged SAC (SAC105 and SAC-Q) solder alloys has been studied. Stress-Strain curves have been obtained at low operating temperatures using tensile tests. The SAC leadfree solder samples were subjected to isothermal-aged up to 4-months at 50°C before testing. Anand Viscoplastic model has been used to describe the material constitutive behavior. Evolution of Anand Model parameters for SAC solder has been investigated. The computed parameters of the experimental data were used to simulate the tensile test and verified the accuracy of the model. A good correlation was found between experimental data and Anand predicted data.\",\"PeriodicalId\":199024,\"journal\":{\"name\":\"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ipack2019-6577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipack2019-6577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

除了高应变率外,汽车、农业和航空电子应用中的电子设备在存储、操作和处理过程中可能受到- 55至200°C的温度范围的影响。由于振动和冲击造成的应变速率可能在每秒1-100次之间。电子组件的温度通常取决于位置、能量耗散和热结构。一些研究人员指出,位于引擎盖下、发动机和变速箱上的汽车电子设备所需的工作温度在- 40至200°C之间。先前的数据表明,在长时间暴露于高温下,力学性能的演变。然而,本构模型通常只适用于原始材料。本文研究了低温(- 65°C至0°C)对时效SAC (SAC105和SAC- q)钎料合金在高应变速率(10-75 /秒)下anand模型参数的影响。通过拉伸试验获得了低温下的应力-应变曲线。在测试前,SAC无铅焊料样品在50°C下进行了长达4个月的等温老化。采用粘塑性模型来描述材料的本构行为。研究了SAC焊料Anand模型参数的演化规律。将计算得到的实验数据参数进行了模拟拉伸试验,验证了模型的准确性。实验数据与Anand预测数据具有良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of Anand Parameters With Elevated Temperature Aging for SAC Leadfree Alloys
Electronic equipment in automotive, agricultural and avionics applications may be subjected to temperatures in the range of −55 to 200°C during storage, operation and handling in addition to high strain-rates. Strain rates in owing to vibration and shock may range from 1–100 per sec. Temperature in electronic assemblies depends typically on location, energy dissipation and thermal architecture. Some investigators have indicated that the required operating temperature is between −40 to 200°C for automotive electronics located underhood, on engine, on transmission. Prior data indicates the evolution of mechanical properties under extended exposures to high temperatures. However, the constitutive models are often only available for pristine materials only. In this paper, effect of low operating temperatures (−65°C to 0°C) on Anand-model parameters at high strain rates (10–75 per sec) for aged SAC (SAC105 and SAC-Q) solder alloys has been studied. Stress-Strain curves have been obtained at low operating temperatures using tensile tests. The SAC leadfree solder samples were subjected to isothermal-aged up to 4-months at 50°C before testing. Anand Viscoplastic model has been used to describe the material constitutive behavior. Evolution of Anand Model parameters for SAC solder has been investigated. The computed parameters of the experimental data were used to simulate the tensile test and verified the accuracy of the model. A good correlation was found between experimental data and Anand predicted data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信