Feng Zhang , Bo-lan Li , Meng-xiao Jiao , Yan-bo Li , Xin Wang , Yu Yang , Yu-qiu Yang , Xiao-hua Zhang
{"title":"Polyetherketoneketone/carbon fiber composites with an amorphous interface prepared by solution impregnation","authors":"Feng Zhang , Bo-lan Li , Meng-xiao Jiao , Yan-bo Li , Xin Wang , Yu Yang , Yu-qiu Yang , Xiao-hua Zhang","doi":"10.1016/S1872-5805(22)60646-2","DOIUrl":"10.1016/S1872-5805(22)60646-2","url":null,"abstract":"<div><p>Interfacial adhesion between carbon fibers (CF) and polyetherketoneketone (PEKK) is a key factor that affects the mechanical performances of their composites. It is therefore of great importance to impregnate the CF bundles with PEKK as efficiently as possible. We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280, 320, 340 and 360 °C. The excellent wettability or infiltration of the PEKK solution guarantees a full covering and its tight binding to CFs, making it possible to evaluate the interfacial shear strength (IFSS) with the microdroplet method. The interior of the CF bundles is completely and uniformly filled with PEKK by solution impregnation, leading to a high interlaminar shear strength (ILSS). The maximum IFSS and ILSS reached 107.8 and 99.3 MPa, respectively. Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 692-702"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of a high-performance synthetic pitch from aromatic hydrocarbons containing N/Cl","authors":"Yu-kun Zhang, Xiong-chao Lin, Hong-feng Gao, Wen-shuai Xi, Cai-hong Wang, Yong-gang Wang","doi":"10.1016/S1872-5805(24)60864-4","DOIUrl":"10.1016/S1872-5805(24)60864-4","url":null,"abstract":"<div><p>The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecular level, which would be useful in fabrication. An isotropic synthetic pitch was prepared by a chlorine- and/or nitrogen-induced substitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N, which for this study were chloromethyl naphthalene and quinoline. This method was verified by investigating the structural changes under different synthesis conditions, and the synthesis mechanism induced by aromatics containing Cl was also probed. The result shows that the pyridinic N in quinoline contains a lone pair of electrons, and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl. The reaction between such free radicals causes strong homopolymerization and oligomerization. A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch. A linear molecular structure was formed by the Cl substitution reaction, which produced a highly spinnable pitch with a softening point of 258.6 °C, and carbon fibers with a tensile strength of 1 163.82 MPa were obtained. This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 655-667"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zi-hui Ma , Tao Yang , Yan Song , Wen-sheng Chen , Chun-feng Duan , Huai-he Song , Xiao-dong Tian , Xiang-jie Gong , Zheng-yang Liu , Zhan-jun Liu
{"title":"A review of the catalytic preparation of mesophase pitch","authors":"Zi-hui Ma , Tao Yang , Yan Song , Wen-sheng Chen , Chun-feng Duan , Huai-he Song , Xiao-dong Tian , Xiang-jie Gong , Zheng-yang Liu , Zhan-jun Liu","doi":"10.1016/S1872-5805(24)60862-0","DOIUrl":"10.1016/S1872-5805(24)60862-0","url":null,"abstract":"<div><p>Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance carbon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperatures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly improve the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pretreatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a catalyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 583-610"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiu-peng Song, Yan Zhao, Xue-kuan Li, Shu Xiong, Shuang Li, Kai Wang
{"title":"Increasing the toughness while reducing the viscosity of carbon nano-tube/polyether imide/polyether ether ketone nanocomposites","authors":"Jiu-peng Song, Yan Zhao, Xue-kuan Li, Shu Xiong, Shuang Li, Kai Wang","doi":"10.1016/S1872-5805(22)60643-7","DOIUrl":"10.1016/S1872-5805(22)60643-7","url":null,"abstract":"<div><p>Polyether ether ketone (PEEK) has good mechanical properties. However, its high viscosity when molten limits its use because it is hard to process. PEEK nanocomposites containing both carbon nanotubes (CNTs) and polyether imide (PEI) were prepared by a direct wet powder blending method using a vertical injection molding machine. The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50% while producing an increase in the toughness of the nanocomposites, whose strain to failure increased by 129%, and fracture energy increased by 97%. The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance. This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 715-728"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Liu, Sheng-kai Chang, Zhan-peng Su, Zu-jian Huang, Ji Qin, Jian-xiao Yang
{"title":"Semi-quantitative analysis of the structural evolution of mesophase pitch-based carbon foams by Raman and FTIR spectroscopy","authors":"Yue Liu, Sheng-kai Chang, Zhan-peng Su, Zu-jian Huang, Ji Qin, Jian-xiao Yang","doi":"10.1016/S1872-5805(24)60867-X","DOIUrl":"10.1016/S1872-5805(24)60867-X","url":null,"abstract":"<div><p>Graphitized carbon foams (GFms) were prepared using mesophase pitch (MP) as a raw material by foaming (450 °C), pre-oxidation (320 °C), carbonization (1 000 °C) and graphitization (2 800 °C). The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared, and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage. Semi-quantitative spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm derived from it. Combined with microscopic observations, the change from precursor to GFm was analyzed. The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch, which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties. Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores, giving the best compression resistance (2.47 MPa), the highest thermal conductivity (64.47 W/(m·K)) and the lowest electrical resistance (13.02 μΩ·m). Characterization combining semi-quantitative spectroscopic analysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 668-680"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong-kun Zhuang, Wen-cui Li, Bin He, Jia-he Lv, Jing-song Wang, Ming-yuan Shen, An-hui Lu
{"title":"Increasing the interlayer spacing and generating closed pores to produce petroleum coke-based carbon materials for sodium ion storage","authors":"Hong-kun Zhuang, Wen-cui Li, Bin He, Jia-he Lv, Jing-song Wang, Ming-yuan Shen, An-hui Lu","doi":"10.1016/S1872-5805(24)60858-9","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60858-9","url":null,"abstract":"<div><p>Petroleum coke (PC) is a valuable precursor for sodium-ion battery (SIB) anodes due to its high carbon content and low cost. The regulation of the microcrystalline state and pore structure of the easily-graphitized PC-based carbon is crucial for creating abundant Na<sup>+</sup> storage sites. Here we used a precursor transformation strategy to increase the carbon interlayer spacing and generate abundant closed pores in PC-based carbon, significantly increasing its Na<sup>+</sup> storage capacity in the plateau region. This was achieved by introducing a large number of oxygen functional groups through mixed acid treatment and then using high-temperature carbonization to decompose the oxygen functional groups and rearrange the carbon microcrystallites, resulting in a transition from open to closed pores. The optimized samples provide a large reversible capacity of 356.0 mAh g<sup>−1</sup> at 0.02 A g<sup>−1</sup>, of which approximately 93% is below 1.0 V. Galvanostatic intermittent titration (GITT) and in-situ X-ray diffraction (XRD) analysis indicate that the sodium storage capacity in the low voltage plateau region involves a joint contribution of interlayer insertion and closed pore filling processes. This study presents a comprehensive method for the development of high-performance carbon anodes using low-cost and highly aromatic precursors.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 549-560"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Zhang , Yong Tian , Wei-li Zhang , Jia-yin Song , Jie Min , Bo Pang , Jian-jun Chen
{"title":"Electrochemical methods for the removal of impurities from thegraphite anode in spent ternary lithium-ion batteries","authors":"Rui Zhang , Yong Tian , Wei-li Zhang , Jia-yin Song , Jie Min , Bo Pang , Jian-jun Chen","doi":"10.1016/S1872-5805(24)60843-7","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60843-7","url":null,"abstract":"<div><p>The use of lithium-ion batteries (LIBs) is becoming increasingly widespread, and a large number are reaching their end of life. The recycling and re-use of spent LIBs has attracted great attention. Because of the unchanged layer structure of the graphite anode in these batteries, their recycling does not require high-temperature graphitization, and only focuses on the removal of internal impurities. We used electrochemical treatment for the deep removal of internal metal impurities after the heat treatment, ultrasonic separation, and acid leaching of spent graphite. By comparing and analyzing the graphite in different recovery stages, it was found that the presence of organic impurities seriously affects the electrochemical performance. The presence of trace inorganic impurities such as Cu and Fe has little effect on the initial discharge specific capacity, but reduces the cycling stability of graphite. The content of the main metal impurities in the final recycled graphite was less than 20 mg/kg. The discharge specific capacity reached358.7 mAh/g at 0.1 C, and the capacity remained at 95.85% after 150 cycles. Compared with the reported methods for recycling spent graphite, this method can efficiently remove impurities in the graphite, solve the current problems of high acid and alkali consumption, incomplete impurity removal and high energy consumption. The recycled graphite anode has a good electrochemical performance. Our work provides a new recycling and regeneration path for spent LIB graphite anodes.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 573-582"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiu-tong Jiang , Guo-qing Wang , Yi Li , Hong-wei Huang , Qian Li , Jian Yang
{"title":"Plasma-assisted preparation of NiCoAl-layered double hydroxides with alarge interlayer spacing on carbon cloth forelectrochemical deionization","authors":"Qiu-tong Jiang , Guo-qing Wang , Yi Li , Hong-wei Huang , Qian Li , Jian Yang","doi":"10.1016/S1872-5805(24)60854-1","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60854-1","url":null,"abstract":"<div><p>Capacitive deionization has been considered an emerging desalination technique in recent years, especially for its economic and energy-saving characteristics for brackish water. However, there are currently few studies on chloride ion removal electrodes, and the slow desalination kinetics limits their development. Ar-NiCoAl- layered double hydroxide (LDH)@ACC materials with an increased interlayer spacing were prepared by the in-situ growth of NiCoAl-LDHs nanosheet arrays on acid-treated carbon cloth (ACC) and subsequent Ar plasma treatment. The carbon cloth suppresses the agglomeration of the NiCoAl-LDHs nanosheets and improves the electrical conductivity, while the plasma treatment increases the interlayer spacing of NiCoAl-LDHs and improves its hydrophilicity. This provides rapid diffusion channels and more interlayer active sites for chloride ions, achieving high desalination kinetics. A hybrid capacitive deionization (HCDI) cell was assembled using Ar-NiCoAl-LDHs@ACC as the chloride ion removal electrode and activated carbon as the sodium ion removal electrode. This HCDI cell achieved a high desalination capacity of 93.26 mg g<sup>−1</sup> at 1.2 V in a 1000 mg L<sup>−1</sup> NaCl solution, a remarkable desalination rate of 0.27 mg g<sup>−1</sup> s<sup>−1</sup>, and a good charge efficiency of 0.97. The capacity retention remained above 85% after 100 cycles in a 300 mg L<sup>−1</sup> NaCl solution at 0.8 V. The work provides new ideas for the controlled preparation of two-dimensional metal hydroxide materials with a large interlayer spacing and the design of high-performance electrochemical chlorine ion removal electrodes.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 561-572"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of graphdiyne in aqueous ion batteries","authors":"Xian-min Xu , Wen-cong Feng , Jing-ke Ren , Wen Luo","doi":"10.1016/S1872-5805(24)60852-8","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60852-8","url":null,"abstract":"<div><p>Graphdiyne is a novel carbon material with a special carbon hybrid arrangement, unique chemical and electronic structure and numerous pores that has promising applications in electrochemical energy storage. Emerging aqueous ion batteries have advantages of low cost and high safety, but the development of high-performance electrode materials, the design of new membrane systems and ways of stabilizing the interface remain the main challenges in their manufacture. With its unique porous structure and excellent electrochemical properties, graphdiyne can improve ion transport, interface deposition behavior and electrolyte instability in the aspects of anode protection, cathode cladding, membrane design and stabilizing the pH value of the interface. A bottom-up molecular structural design strategy makes graphdiyne easy to modify and dope, improving the properties of its analogues and thus expanding their applications in aqueous ion batteries. We systematically summarize the structure, properties, and synthesis methods of graphdiyne, and summarize the research of graphdiyne in aqueous ion batteries. A comprehensive evaluation of the existing problems and challenges of the use of graphdiyne in aqueous ion batteries is given, and future trends and developments are suggested.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 388-406"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shu-qin Lan , Wei-cheng Ren , Zhao Wang , Chang Yu , Jin-he Yu , Ying-bin Liu , Yuan-yang Xie , Xiu-bo Zhang , Jian-jian Wang , Jie-shan Qiu
{"title":"Sulfonyl chloride-intensified metal chloride intercalation of graphite for efficient sodium storage","authors":"Shu-qin Lan , Wei-cheng Ren , Zhao Wang , Chang Yu , Jin-he Yu , Ying-bin Liu , Yuan-yang Xie , Xiu-bo Zhang , Jian-jian Wang , Jie-shan Qiu","doi":"10.1016/S1872-5805(24)60851-6","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60851-6","url":null,"abstract":"<div><p>Metal chloride-intercalated graphite with excellent conductivity and a large interlayer spacing is highly desired for use in sodium ion batteries. However, halogen vapor is usually indispensable in initiating the intercalation process, which makes equipment design and experiments challenging. In this work, SO<sub>2</sub>Cl<sub>2</sub> was used as a chlorine generator to intensify the intercalation of BiCl<sub>3</sub> into graphite (BiCl<sub>3</sub>-GICs), which avoided the potential risks, such as Cl<sub>2</sub> leakage, in traditional methods. The operational efficiency in the experiment was also improved. After the reaction of SO<sub>2</sub>Cl<sub>2</sub>, BiCl<sub>3</sub>, and graphite at 200 <sup>o</sup>C for 20 h, the synthesized BiCl<sub>3</sub>-GICs had a large interlayer spacing (1.26 nm) and a high amount of BiCl<sub>3</sub> intercalation (42%), which gave SIBs a high specific capacity of 213 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> and an excellent rate performance (170 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>). In-situ Raman spectra revealed that the electronic interaction between graphite and intercalated BiCl<sub>3</sub> is weakened during the first discharge, which is favorable for sodium storage. This work broadly enables the increased intercalation of other metal chloride-intercalated graphites, offering possibilities for developing advanced energy storage devices.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 538-548"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}