New Carbon Materials最新文献

筛选
英文 中文
Changing the pore structure and surface chemistry of hard carbon by coating it with a soft carbon to boost high-rate sodium storage 用软碳包覆硬碳,改变硬碳的孔隙结构和表面化学性质,提高钠的高速率储存
IF 5.7 3区 材料科学
New Carbon Materials Pub Date : 2025-06-01 DOI: 10.1016/S1872-5805(25)60979-6
Qin ZHONG , Ying MO , Wang ZHOU , Biao ZHENG , Jian-fang WU , Guo-ku LIU , Zieauddin Kufian Mohd , Osman Zurina , Xiong-wen XU , Peng GAO , Le-zhi YANG , Ji-lei LIU
{"title":"Changing the pore structure and surface chemistry of hard carbon by coating it with a soft carbon to boost high-rate sodium storage","authors":"Qin ZHONG ,&nbsp;Ying MO ,&nbsp;Wang ZHOU ,&nbsp;Biao ZHENG ,&nbsp;Jian-fang WU ,&nbsp;Guo-ku LIU ,&nbsp;Zieauddin Kufian Mohd ,&nbsp;Osman Zurina ,&nbsp;Xiong-wen XU ,&nbsp;Peng GAO ,&nbsp;Le-zhi YANG ,&nbsp;Ji-lei LIU","doi":"10.1016/S1872-5805(25)60979-6","DOIUrl":"10.1016/S1872-5805(25)60979-6","url":null,"abstract":"<div><div>Changes to the microstructure of a hard carbon (HC) and its solid electrolyte interface (SEI) can be effective in improving the electrode kinetics. However, achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries. A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface, and its effect on the porosity of HC and SEI chemistry has been studied. A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents. The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch, which provides more Na<sup>+</sup> storage sites. In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte, which stabilized the interface and promoted the charge transfer process. As a result, the anode produced fastcharging (329.8 mAh g<sup>–1</sup> at 30 mA g<sup>–1</sup> and 198.6 mAh g<sup>–1</sup> at 300 mA g<sup>–1</sup>) and had a better cycling performance (a high capacity retention of 81.4% after 100 cycles at 150 mA g<sup>–1</sup>). This work reveals the critical role of coating layer in changing the pore structure, SEI chemistry and diffusion kinetics of hard carbon, which enables rational design of sodium-ion battery anode with enhanced fast charging capability.\u0000\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (121KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 651-665"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144501882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of 3D graphene materials for energy storage and conversion 三维石墨烯储能与转换材料研究进展
IF 5.7 3区 材料科学
New Carbon Materials Pub Date : 2025-06-01 DOI: 10.1016/S1872-5805(25)60989-9
Zi-yuan WU , Chi-wei XU , Jin-jue ZENG , Xiang-fen JIANG , Xue-bin WANG
{"title":"A review of 3D graphene materials for energy storage and conversion","authors":"Zi-yuan WU ,&nbsp;Chi-wei XU ,&nbsp;Jin-jue ZENG ,&nbsp;Xiang-fen JIANG ,&nbsp;Xue-bin WANG","doi":"10.1016/S1872-5805(25)60989-9","DOIUrl":"10.1016/S1872-5805(25)60989-9","url":null,"abstract":"<div><div>Three-dimensional (3D) graphene monoliths are a new carbon material, that has tremendous potential in the fields of energy conversion and storage. They can solve the limitations of two-dimensional (2D) graphene sheets, including interlayer restacking, high contact resistance, and insufficient pore accessibility. By constructing interconnected porous networks, 3D graphenes not only retain the intrinsic advantages of 2D graphene sheets, such as high specific surface area, excellent electrical and thermal conductivities, good mechanical properties, and outstanding chemical stability, but also enable efficient mass transport of external fluid species. We summarize the fabrication methods for 3D graphenes, with a particular focus on their applications in energy-related systems. Techniques including chemical reduction assembly, chemical vapor deposition, 3D printing, chemical blowing, and zinc-tiered pyrolysis have been developed to change their pore structure and elemental composition, and ways in which they can be integrated with functional components. In terms of energy conversion and storage, they have found broad use in buffering mechanical impacts, suppressing noise, photothermal conversion, electromagnetic shielding and absorption. They have also been used in electrochemical energy systems such as supercapacitors, secondary batteries, and electrocatalysis. By reviewing recent progress in structural design and new applications, we also discuss the problems these materials face, including scalable fabrication and precise pore structure control, and possible new applications.\u0000\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (150KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 477-517"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144502028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High strength carbon nanotube fibers: synthesis development, property improvement and possible applications 高强度碳纳米管纤维:合成发展、性能改进及应用前景
IF 5.7 3区 材料科学
New Carbon Materials Pub Date : 2025-06-01 DOI: 10.1016/S1872-5805(25)60980-2
Ao SUN , Nuo XU , Yue-fan WANG , Jia-qi XU , Zi-zheng SHI , Xiao ZHANG
{"title":"High strength carbon nanotube fibers: synthesis development, property improvement and possible applications","authors":"Ao SUN ,&nbsp;Nuo XU ,&nbsp;Yue-fan WANG ,&nbsp;Jia-qi XU ,&nbsp;Zi-zheng SHI ,&nbsp;Xiao ZHANG","doi":"10.1016/S1872-5805(25)60980-2","DOIUrl":"10.1016/S1872-5805(25)60980-2","url":null,"abstract":"<div><div>The use of carbon nanotube fibers (CNTFs), which are macroscopic assemblies of billions of carbon nanotubes (CNTs), has long been limited by their disordered and loose microstructures. As a result, their mechanical properties are several orders of magnitude lower than those of single CNTs. In recent years, with the innovation in CNTF preparation techniques, not only has continuous mass production at the industrial level been achieved, but the cost has also significantly decreased to levels close to those of high-performance commercial fibers due to the economies of scale. High performance CNTFs have been developed that have a high strength, moderate to high modulus, high electrical conductivity, high thermal conductivity, high flexibility, and low density. These advanced CNTFs have not only surpassed the characteristic properties of benchmark commercial fibers but have also been widely explored for use in structural materials for aerospace, conductive cables, and novel mechanical energy harvesting. During the last decade there has been significant improvements in CNTF preparation techniques, post-synthesis treatment and its mechanisms, understanding the failure mechanisms of structures developed from them, and many new applications have been explored. The review attempts to understand the key problems in transferring properties from the nanoscale to the macroscale and discusses feasible ways to approach the superior properties of CNTs in order to widen the future applications of CNTFs.\u0000\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (89KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 621-641"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144501879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave-enabled rapid, continuous, and substrate-free synthesis of few-layer graphdiyne nanosheets for enhanced potassium metal battery performance 微波支持快速,连续,无底物合成的少层石墨烯纳米片,以增强钾金属电池的性能
IF 5.7 3区 材料科学
New Carbon Materials Pub Date : 2025-06-01 DOI: 10.1016/S1872-5805(25)60987-5
Ya KONG , Shi-peng ZHANG , Yu-ling YIN , Zi-xuan ZHANG , Xue-ting FENG , Feng DING , Jin ZHANG , Lian-ming TONG , Xin GAO
{"title":"Microwave-enabled rapid, continuous, and substrate-free synthesis of few-layer graphdiyne nanosheets for enhanced potassium metal battery performance","authors":"Ya KONG ,&nbsp;Shi-peng ZHANG ,&nbsp;Yu-ling YIN ,&nbsp;Zi-xuan ZHANG ,&nbsp;Xue-ting FENG ,&nbsp;Feng DING ,&nbsp;Jin ZHANG ,&nbsp;Lian-ming TONG ,&nbsp;Xin GAO","doi":"10.1016/S1872-5805(25)60987-5","DOIUrl":"10.1016/S1872-5805(25)60987-5","url":null,"abstract":"<div><div>Graphdiyne (GDY) is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention. However, its efficient and scalable synthesis remains a significant challenge. We present a microwave-assisted approach for its continuous, large-scale production which enables synthesis at a rate of 0.6 g/h, with a yield of up to 90%. The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm. We used GDY as a stable coating for potassium (K) metal anodes (K@GDY), taking advantage of its unique molecular structure to provide favorable paths for K-ion transport. This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries. Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance, stability, and cycle life. The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100% Coulombic efficiency. This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.\u0000\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (156KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 642-650"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144501880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of graphene assembled films as platforms for electrochemical reactions 石墨烯组装膜作为电化学反应平台的研究进展
IF 5.7 3区 材料科学
New Carbon Materials Pub Date : 2025-06-01 DOI: 10.1016/S1872-5805(25)60992-9
Yong-fang ZHU , Xiao-dong JI , Wen-kai PAN , Geng WU , Peng LI , Bo LIU , Da-ping HE
{"title":"A review of graphene assembled films as platforms for electrochemical reactions","authors":"Yong-fang ZHU ,&nbsp;Xiao-dong JI ,&nbsp;Wen-kai PAN ,&nbsp;Geng WU ,&nbsp;Peng LI ,&nbsp;Bo LIU ,&nbsp;Da-ping HE","doi":"10.1016/S1872-5805(25)60992-9","DOIUrl":"10.1016/S1872-5805(25)60992-9","url":null,"abstract":"<div><div>Because of their low electrical conductivity, sluggish ion diffusion, and poor stability, conventional electrode materials are not able to meet the growing demands of energy storage and portable devices. Graphene assembled films (GAFs) formed from graphene nanosheets have an ultrahigh conductivity, a unique 2D network structure, and exceptional mechanical strength, which give them the potential to solve these problems. However, a systematic understanding of GAFs as an advanced electrode material is lacking. This review focuses on the use of GAFs in electrochemistry, providing a comprehensive analysis of their synthesis methods, surface/structural characteristics, and physical properties, and thus understand their structure-property relationships. Their advantages in batteries, supercapacitors, and electrochemical sensors are systematically evaluated, with an emphasis on their excellent electrical conductivity, ion transport kinetics, and interfacial stability. The existing problems in these devices, such as chemical inertness and mechanical brittleness, are discussed and potential solutions are proposed, including defect engineering and hybrid structures. This review should deepen our mechanistic understanding of the use of GAFs in electrochemical systems and provide actionable strategies for developing stable, high-performance electrode materials.\u0000\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (117KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 519-538"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144502029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the oxidation resistance of HfB2-SiC coatings on carbon/carbon composites by CeO2 doping CeO2掺杂提高碳/碳复合材料表面HfB2-SiC涂层的抗氧化性
IF 5.7 3区 材料科学
New Carbon Materials Pub Date : 2025-06-01 DOI: 10.1016/S1872-5805(25)60994-2
Chang-lin HE , Zhi-chao SHANG , Wei-guang WANG , Xiang-ming LI , Kun WANG , Yue-xing CHEN , Xin-tan BAI , Pei-pei WANG , Xiang JI , Xuan-ru REN , A Levashov Evgeny , Kiryukhantsev-Korneev Ph V , Pei-zhong FENG
{"title":"Improving the oxidation resistance of HfB2-SiC coatings on carbon/carbon composites by CeO2 doping","authors":"Chang-lin HE ,&nbsp;Zhi-chao SHANG ,&nbsp;Wei-guang WANG ,&nbsp;Xiang-ming LI ,&nbsp;Kun WANG ,&nbsp;Yue-xing CHEN ,&nbsp;Xin-tan BAI ,&nbsp;Pei-pei WANG ,&nbsp;Xiang JI ,&nbsp;Xuan-ru REN ,&nbsp;A Levashov Evgeny ,&nbsp;Kiryukhantsev-Korneev Ph V ,&nbsp;Pei-zhong FENG","doi":"10.1016/S1872-5805(25)60994-2","DOIUrl":"10.1016/S1872-5805(25)60994-2","url":null,"abstract":"<div><div>To improve the oxidation resistance of HfB<sub>2</sub>-SiC coatings on carbon/carbon composites at 1700 °C in air, CeO<sub>2</sub> was introduced to improve oxygen blocking and its mechanism was investigated. During the rapid oxidation stage, CeO<sub>2</sub> accelerated the formation of a multiphase glass layer on the coating surface. The maximum oxidation rates of CeO<sub>2</sub>-HfB<sub>2</sub>-SiC coatings with 1%, 3%, and 5% CeO<sub>2</sub> were 24.1%, 20.3%, and 53.2% higher than that of the unmodified HfB<sub>2</sub>-SiC coating, respectively. In the stable oxidation stage, the maximum oxidation rates of coatings with 1% and 3% CeO<sub>2</sub> decreased by 31.4% and 21.9%, respectively, demonstrating adequate inert protection. CeO<sub>2</sub> is a “coagulant” and “stabilizer” in the composite glass layer. However, increasing the CeO<sub>2</sub> content accelerates the reaction between the SiO<sub>2</sub> glass phase and SiC, leading to a higher SiO<sub>2</sub> consumption and reduced self-healing ability of the glass layer. The 1% CeO<sub>2</sub>-60% HfB<sub>2</sub>-39%SiC coating showed improved glass layer viscosity and stability, moderate SiO<sub>2</sub> consumption, and better self-healing ability, significantly boosting the oxidation protection of the coating.\u0000\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (106KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 688-701"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144501884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of thermally conductive graphene-based films 导热石墨烯基薄膜的研究进展
IF 5.7 3区 材料科学
New Carbon Materials Pub Date : 2025-06-01 DOI: 10.1016/S1872-5805(25)60990-5
Hui-jun LI , Qing ZHANG , Kun HUANG , Song-feng PEI , Wen-cai REN
{"title":"A review of thermally conductive graphene-based films","authors":"Hui-jun LI ,&nbsp;Qing ZHANG ,&nbsp;Kun HUANG ,&nbsp;Song-feng PEI ,&nbsp;Wen-cai REN","doi":"10.1016/S1872-5805(25)60990-5","DOIUrl":"10.1016/S1872-5805(25)60990-5","url":null,"abstract":"<div><div>With the miniaturization and high integration of electronic devices, problems such as heat accumulation and non-uniform temperature distribution during operation have significantly compromised the reliability and stability of electronic systems, thereby hindering the advance of electronic technology. Because of the exceptionally high in-plane thermal conductivity of graphene, its films can effectively spread heat from localized hotspots to a larger heat dissipation area, thereby increasing the heat dissipation and reducing the operating temperatures of the device. As a result, such films are critical materials for thermal management in electronic equipment. This review systematically examines the relationship between their structure and thermal conductivity, outlines their main fabrication methods, explores the mechanisms for controlling defects in them using different precursors, formation processes, and heat treatments, and summarizes existing research aimed at improving their thermal conductivity. Finally, the problems associated with these films and their future development are discussed.\u0000\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (96KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 540-552"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144502030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress on the preparation of bamboo-based activated carbon for CO2 adsorption 竹基活性炭吸附CO2的制备研究进展
IF 5.7 3区 材料科学
New Carbon Materials Pub Date : 2025-04-01 DOI: 10.1016/S1872-5805(25)60956-5
Bing-jie Wang, Qiang Xie, Yu-tong Sha, Jin-chang Liu, Ding-cheng Liang
{"title":"Research progress on the preparation of bamboo-based activated carbon for CO2 adsorption","authors":"Bing-jie Wang,&nbsp;Qiang Xie,&nbsp;Yu-tong Sha,&nbsp;Jin-chang Liu,&nbsp;Ding-cheng Liang","doi":"10.1016/S1872-5805(25)60956-5","DOIUrl":"10.1016/S1872-5805(25)60956-5","url":null,"abstract":"<div><div>The ecological and environmental issues caused by CO<sub>2</sub> emissions are becoming increasingly severe. Adsorption separation is recognized as one of the effective approaches for CO<sub>2</sub> capture, with activated carbon serving as a widely used adsorbent. As high-quality coal resources for activated carbon production are gradually being depleted, the use of bamboo, anabundant resource in China, as a raw material for activated carbon has become a rational alternative. This paper reviews the mechanisms influencing the CO<sub>2</sub> adsorption performance of activated carbon, such as pore structure and surface chemistry, and thoroughly explores the relationship between its composition, structure, and CO<sub>2</sub> adsorption performance. It focuses on the important process aspects of pore regulation, surface modification strategies, and molding techniques for bamboo-based activated carbon, summarizing research progress in the preparation and modification methods of bamboo-based activated carbon for CO<sub>2</sub> adsorption. Technical challenges in its current production are evaluated and future development directions are proposed, aim-ing to provide technical insights for promoting the use of bamboo-based activated carbon for CO<sub>2</sub> capture.\u0000\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (92KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 2","pages":"Pages 317-332"},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143887618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of the use of electrospinning in the preparation of flexible lithium-ion batteries 综述了静电纺丝技术在柔性锂离子电池制备中的应用
IF 5.7 3区 材料科学
New Carbon Materials Pub Date : 2025-04-01 DOI: 10.1016/S1872-5805(25)60962-0
Jia-yi XING , Yu-zhuo ZHANG , Shu-xin FENG , Ke-meng JI
{"title":"A review of the use of electrospinning in the preparation of flexible lithium-ion batteries","authors":"Jia-yi XING ,&nbsp;Yu-zhuo ZHANG ,&nbsp;Shu-xin FENG ,&nbsp;Ke-meng JI","doi":"10.1016/S1872-5805(25)60962-0","DOIUrl":"10.1016/S1872-5805(25)60962-0","url":null,"abstract":"<div><div>Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batteries (FLIBs) due to its ability to create materials with desirable properties for energy storage applications. FLIBs, which are foldable and have high energy densities, are becoming increasingly important as power sources for wearable devices, flexible electronics, and mobile energy applications. Carbon materials, especially carbon nanofibers, are pivotal in improving the performance of FLIBs by increasing electrical conductivity, chemical stability, and surface area, as well as reducing costs. These materials also play a significant role in establishing conducting networks and improving structural integrity, which are essential for extending the cycle life and enhancing the safety of the batteries. This review considers the role of electrospinning in the fabrication of critical FLIB components, with a particular emphasis on the integration of carbon materials. It explores strategies to optimize FLIB performance by fine-tuning the electrospinning parameters, such as electric field strength, spinning rate, solution concentration, and carbonization process. Precise control over fiber properties is crucial for enhancing battery reliability and stability during folding and bending. It also highlights the latest research findings in carbon-based electrode materials, high-performance electrolytes, and separator structures, discussing the practical challenges and opportunities these materials present. It underscores the significant impact of carbon materials on the evolution of FLIBs and their potential to shape future energy storage technologies.\u0000\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (127KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 2","pages":"Pages 270-291"},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143887621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring the pore structure of hard carbon for enhanced sodium-ion battery anodes 为增强的钠离子电池阳极调整硬碳的孔隙结构
IF 5.7 3区 材料科学
New Carbon Materials Pub Date : 2025-04-01 DOI: 10.1016/S1872-5805(25)60967-X
Ning-Jing SONG , Can-liang MA , Nan-nan GUO , Yun ZHAO , Wan-xi LI , Bo-qiong LI
{"title":"Tailoring the pore structure of hard carbon for enhanced sodium-ion battery anodes","authors":"Ning-Jing SONG ,&nbsp;Can-liang MA ,&nbsp;Nan-nan GUO ,&nbsp;Yun ZHAO ,&nbsp;Wan-xi LI ,&nbsp;Bo-qiong LI","doi":"10.1016/S1872-5805(25)60967-X","DOIUrl":"10.1016/S1872-5805(25)60967-X","url":null,"abstract":"<div><div>Biomass-derived hard carbons, usually prepared by pyrolysis, are widely considered the most promising anode materials for sodium-ion batteries (SIBs) due to their high capacity, low potential, sustainability, cost-effectiveness, and environmental friendliness. The pyrolysis method affects the microstructure of the material, and ultimately its sodium storage performance. Our previous work has shown that pyrolysis in a sealed graphite vessel improved the sodium storage performance of the carbon, however the changes in its microstructure and the way this influences the sodium storage are still unclear. A series of hard carbon materials derived from corncobs (CCG-<em>T</em>, where <em>T</em> is the pyrolysis temperature) were pyrolyzed in a sealed graphite vessel at different temperatures. As the pyrolysis temperature increased from 1000 to 1400 °C small carbon domains gradually transformed into long and curved domains. At the same time, a greater number of large open pores with uniform apertures, as well as more closed pores, were formed. With the further increase of pyrolysis temperature to 1600 °C, the long and curved domains became longer and straighter, and some closed pores gradually became open. CCG-1400, with abundant closed pores, had a superior SIB performance, with an initial reversible capacity of 320.73 mAh g<sup>−1</sup> at a current density of 30 mA g<sup>−1</sup>, an initial Coulomb efficiency (ICE) of 84.34%, and a capacity retention of 96.70% after 100 cycles. This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials.\u0000\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (100KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 2","pages":"Pages 367-380"},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143887575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信