Yan-bing YUAN , Zong-bin ZHAO , Hong-hui BI , Run-meng ZHANG , Xu-zhen WANG , Jie-shan QIU
{"title":"A B,N co-doped carbon nanotube array with anchored MnO2 nanosheets as a flexible cathode for aqueous zinc-ion batteries","authors":"Yan-bing YUAN , Zong-bin ZHAO , Hong-hui BI , Run-meng ZHANG , Xu-zhen WANG , Jie-shan QIU","doi":"10.1016/S1872-5805(25)60945-0","DOIUrl":"10.1016/S1872-5805(25)60945-0","url":null,"abstract":"<div><div>For rechargeable aqueous zinc-ion batteries (ZIBs), the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great promise in addressing the issue of electrical conductivity and structural stability in the electrode materials during electrochemical cycling. We report the production of a novel flexible electrode material, by anchoring MnO<sub>2</sub> nanosheets on a B,N co-doped carbon nanotube array (BNCNTs) grown on carbon cloth (BNCNTs@MnO<sub>2</sub>), which was fabricated by in-situ pyrolysis and hydrothermal growth. The generated BNCNTs were strongly bonded to the surface of the carbon fibers in the carbon cloth which provides both excellent electron transport and ion diffusion, and improves the stability and durability of the cathode. Importantly, the BNCNTs offer more active sites for the hydrothermal growth of MnO<sub>2</sub>, ensuring a uniform distribution. Electrochemical tests show that BNCNTs@MnO<sub>2</sub> delivers a high specific capacity of 310.7 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>, along with excellent rate capability and outstanding cycling stability, with a 79.7% capacity retention after 8000 cycles at 3 A g<sup>−1</sup>.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (181KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 200-210"},"PeriodicalIF":5.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mei-ci SUN , Shuo-lin QI , Yun-he ZHAO , Chun-xia CHEN , Li-chao TAN , Zhong-li HU , Xiao-liang WU , Wen-li ZHANG
{"title":"Advances in the use of biomass-derived carbons for sodium-ion batteries","authors":"Mei-ci SUN , Shuo-lin QI , Yun-he ZHAO , Chun-xia CHEN , Li-chao TAN , Zhong-li HU , Xiao-liang WU , Wen-li ZHANG","doi":"10.1016/S1872-5805(25)60953-X","DOIUrl":"10.1016/S1872-5805(25)60953-X","url":null,"abstract":"<div><div>Sodium-ion batteries (SIBs) have emerged as a promising alternative to commercial lithium-ion batteries because of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources. The development of anode materials with a high capacity, excellent rate performance, and long cycle life is the key to the industrialization of SIBs. Biomass-derived carbon (BDC) anode materials synthesized from resource-rich, low-cost, and renewable biomass have been extensively researched and their excellent sodium storage performance has been proven, making them the most promising new low-cost and high-performance anode material for SIBs. This review first introduces the sources of BDCs, including waste biomass such as plants, animals, and microorganisms, and then describes several methods for preparing BDC anode materials, including carbonization, chemical activation, and template methods. The storage mechanism and kinetic process of Na<sup>+</sup> in BDCs are then considered as well as their structure control. The electrochemical properties of sodium-ion storage in BDCs with different structures are examined, and suggestions for future research are made.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (181KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 1-49"},"PeriodicalIF":5.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin HE , Huai-yang ZUO , Ru XIAO , Zhuo-yan QU , Zhen-hua SUN , Bao WANG , Feng Li
{"title":"The use of a ternary metal sulfide loading on carbon fibers as the sulfur host for high performance low-temperature lithium sulfur batteries","authors":"Xin HE , Huai-yang ZUO , Ru XIAO , Zhuo-yan QU , Zhen-hua SUN , Bao WANG , Feng Li","doi":"10.1016/S1872-5805(24)60942-X","DOIUrl":"10.1016/S1872-5805(24)60942-X","url":null,"abstract":"<div><div>The use of lithium-sulfur (Li-S) batteries is limited by sulfur redox reactions involving multi-phase transformations, especially at low-temperatures. To address this issue, we report a material (FCNS@NCFs) consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulfide ((Fe, Co, Ni)<sub>9</sub>S<sub>8</sub>) for use as the sulfur host in Li-S batteries. This material was prepared using transfer blot filter paper as the carbon precursor, thiourea as the source of nitrogen and sulfur, and FeCl<sub>3</sub>·6H<sub>2</sub>O, CoCl<sub>2</sub>·6H<sub>2</sub>O and NiCl<sub>2</sub>·6H<sub>2</sub>O as the metal ion sources. It was synthesized by an impregnation method followed by calcination. The nitrogen doping significantly increased the conductivity of the host, and the metal sulfides have excellent catalytic activities. Theoretical calculations, and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides, facilitate rapid adsorption and conversion, prevent cathode passivation and inhibit the polysulfide shuttling. The FCNS@NCFs used as the sulfur host has excellent electrochemical properties. Its initial discharge capacity is 1639.0 mAh g<sup>−1</sup> at 0.2 C and room temperature, and it remains a capacity of 1255.1 mAh g<sup>−1</sup> after 100 cycles. At −20 ~C, it has an initial discharge capacity of 1578.5 mAh g<sup>−1</sup> at 0.2 C, with a capacity of 867.5 mAh g<sup>−1</sup> after 100 cycles. Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temperature Li-S batteries.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (82KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 167-177"},"PeriodicalIF":5.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reddeppa Nadimicherla , You-chen TANG , Yu-heng LU , Ru-liang LIU
{"title":"Ultra-stable lithium-sulfur batteries using nitrogen-doped porous carbon nanosheets implanted with both Fe and Ni","authors":"Reddeppa Nadimicherla , You-chen TANG , Yu-heng LU , Ru-liang LIU","doi":"10.1016/S1872-5805(25)60944-9","DOIUrl":"10.1016/S1872-5805(25)60944-9","url":null,"abstract":"<div><div>The major problem with lithium-sulfur (Li-S) batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode. We report the production of 2D porous carbon nanosheets doped with both Fe and Ni (Fe/Ni-N-PCNSs) by an easy and template-free approach that solve this problem. Because of their ultrathin porous 2D structure and uniform distribution of Fe and Ni dopants, they capture polysulfides, speed up the sulfur redox reaction, and improve the material’s lithiophilicity, greatly suppressing the shuttling of polysulfides and dendrite growth on the lithium anode. As a result, it has an exceptional performance as a stable host for elemental sulfur and metallic lithium, producing a record long life of 1000 cycles with a very small capacity decay of 0.00025% per cycle in a Li-S battery and an excellent cycling stability of over 850 h with a small overpotential of >72 mV in a lithium metal battery. This work suggests the use of multifunctional-based 2D porous carbon nanosheets as a stable host for both elemental sulfur and metallic lithium to improve the Li-S battery performance.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (65KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 188-198"},"PeriodicalIF":5.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zheng-xuan LI , Xi WU , Bo JIANG , Wang YANG , Jun-yan DONG , Zhong-zhen DING , Chen ZHANG , Shao-xiong DU , Si-yuan LI , Ruo-yao FENG , Yong-feng LI
{"title":"A review of high thermal conductivity carbon-based materials for microwave absorption materials","authors":"Zheng-xuan LI , Xi WU , Bo JIANG , Wang YANG , Jun-yan DONG , Zhong-zhen DING , Chen ZHANG , Shao-xiong DU , Si-yuan LI , Ruo-yao FENG , Yong-feng LI","doi":"10.1016/S1872-5805(25)60948-6","DOIUrl":"10.1016/S1872-5805(25)60948-6","url":null,"abstract":"<div><div>The ever-increasing integration of electronic devices has inevitably caused electromagnetic interference and heat accumulation problems, and dual-function materials with both a high thermal conductivity and high electromagnetic wave absorption (EWA) are regarded as an effective strategy for solving these problems. Carbon materials are widely used as thermal and EWA fillers due to their excellent conductivity and outstanding thermal conduction properties, and have become a research hotspot in the field of high thermal conductivity, microwave absorbing materials in recent years. The status of current research progress on carbon-based high thermalconduction microwave absorption materials, including carbon fibers, carbon nanotubes, graphene and amorphous carbon, is reviewed, and the influence of the structure of the materials on their absorption and thermal conductivity properties, such as core-shell structure, three-dimensional network structure, and heteroatom doping, is also elaborated. Feasible solutions for the current problems with these materials are proposed, with the aim of providing valuable guidance for the future design of carbon-based high thermal conduction microwave absorbing materials.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (119KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 111-130"},"PeriodicalIF":5.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of carbon-based hybrid materials for supercapacitors","authors":"Theodore Azemtsop Manfo , Hannu Laaksonen","doi":"10.1016/S1872-5805(25)60943-7","DOIUrl":"10.1016/S1872-5805(25)60943-7","url":null,"abstract":"<div><div>Supercapacitors are gaining popularity due to their high cycling stability, power density, and fast charge and discharge rates. Researchers are exploring electrode materials, electrolytes, and separators for cost-effective energy storage systems. Advances in materials science have led to the development of hybrid nanomaterials, such as combining filamentous carbon forms with inorganic nanoparticles, to create new charge and energy transfer processes. Notable materials for electrochemical energy-storage applications include MXenes, 2D transition metal carbides, and nitrides, carbon black, carbon aerogels, activated carbon, carbon nanotubes, conducting polymers, carbon fibers, and nanofibers, and graphene, because of their thermal, electrical, and mechanical properties. Carbon materials mixed with conducting polymers, ceramics, metal oxides, transition metal oxides, metal hydroxides, transition metal sulfides, transition metal dichalcogenide, metal sulfides, carbides, nitrides, and biomass materials have received widespread attention due to their remarkable performance, eco-friendliness, cost-effectiveness, and renewability. This article explores the development of carbon-based hybrid materials for future supercapacitors, including electric double-layer capacitors, pseudocapacitors, and hybrid supercapacitors. It investigates the difficulties that influence structural design, manufacturing (electrospinning, hydrothermal/ solvothermal, template-assisted synthesis, electrodeposition, electrospray, 3D printing) techniques and the latest carbon-based hybrid materials research offer practical solutions for producing high-performance, next-generation supercapacitors.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (158KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 81-110"},"PeriodicalIF":5.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pin-xiang LI , Zhe-han YI , Ye-xing WANG , Chang HE , Ji LIANG , Feng HOU
{"title":"The use of an oxidized carbon nanotube film to control Zn deposition and eliminate dendrite formation in a Zn ion battery","authors":"Pin-xiang LI , Zhe-han YI , Ye-xing WANG , Chang HE , Ji LIANG , Feng HOU","doi":"10.1016/S1872-5805(25)60950-4","DOIUrl":"10.1016/S1872-5805(25)60950-4","url":null,"abstract":"<div><div>Aqueous zinc ion batteries are regarded as one of the most promising candidates for large-scale energy storage due to their high safety, cost-effectiveness, and environmental friendliness. However, uncontrolled zinc dendrite growth and side reactions of the zinc anode decrease the stability of Zn batteries. We report the synthesis of an air-oxidized carbon nanotube (O-CNT) film by chemical vapor deposition followed by heat treatment in air which is used as a protective layer on the Zn foil to suppress zinc dendrite growth. The increase in the hydrophilicity of the O-CNT film caused by air oxidation facilitates zinc deposition between the film and the anode instead of deposition on the film surface. The porous structure of the O-CNT film homogenizes the Zn<sup>2+</sup> ion flux and the electric field on the surface of the Zn foil, leading to the uniform deposition of Zn. As a result, a O-CNT@Zn symmetric cell has a much better cycling stability with a life of more than 3000 h at 1 mA cm<sup>−2</sup> with a capacity of 1 mAh cm<sup>−2</sup>, and values of more than 2000 h and 1 mAh cm<sup>−2</sup> at 5 mA cm<sup>−2</sup>. In addition, a O-CNT@Zn || Mn<sup>2+</sup> inserted hydrated vanadium pentoxide (MnVOH) full cell has a better rate performance than a Zn || MnVOH cell, achieving a high discharge capacity of 194 mAh g<sup>−1</sup> at a high current density of 8 A g<sup>−1</sup>. In a long-term cycling test, the O-CNT@Zn || MnVOH full cell has a capacity retention of 58.8% after 2000 cycles at a current density of 5 A·g<sup>−1</sup>.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (102KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 154-166"},"PeriodicalIF":5.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-jing YAN , Xiao-hao FANG , De-zhou YAO , Cheng-wei ZHU , Jian-jun SHI , Shan-shan QIAN
{"title":"N/O co-doped microporous carbon as a high-performance electrode for supercapacitors","authors":"Jing-jing YAN , Xiao-hao FANG , De-zhou YAO , Cheng-wei ZHU , Jian-jun SHI , Shan-shan QIAN","doi":"10.1016/S1872-5805(25)60951-6","DOIUrl":"10.1016/S1872-5805(25)60951-6","url":null,"abstract":"<div><div>Carbon materials with adjustable porosity, controllable heteroatom doping and low-cost have been received considerable attention as supercapacitor electrodes. However, using carbon materials with abundant micropores, a high surface area and a high-dopant content for an aqueous supercapacitor with a high energy output still remains a challenge. We report the easy synthesis of interconnected carbon spheres by a polymerization reaction between <em>p</em>-benzaldehyde and 2,6-diaminopyridine. The synthesis involves adjusting the mass ratio of the copolymer and KOH activator to achieve increased charge storage ability and high energy output, which are attributed to the high ion-accessible area provided by the large number of micropores, high N/O contents and rapid ion diffusion channels in the porous structure. At a PMEC∶KOH mass ratio of 1∶1, the high electrolyte ion-adsorption area (2599.76 m<sup>2</sup> g<sup>−1</sup>) and the N/O dopant atoms of the conductive framework of a typical carbon electrode produce a superior specific capacity (303.2 F g<sup>−1</sup>@0.5 A g<sup>−1</sup>) giving an assembled symmetric capacitor a high energy delivery of 11.3 Wh kg<sup>−1</sup>@250 W kg<sup>−1</sup>. This study presents a simple strategy for synthesizing microporous carbon and highlights its potential use in KOH-based supercapacitors.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (53KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 231-242"},"PeriodicalIF":5.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"P, N co-doped hollow carbon nanospheres prepared by micellar copolymerization for increased hydrogen evolution in alkaline water","authors":"Yi-meng HAN, Hao XIONG, Jia-ying YANG, Jian-gan WANG, Fei XU","doi":"10.1016/S1872-5805(25)60949-8","DOIUrl":"10.1016/S1872-5805(25)60949-8","url":null,"abstract":"<div><div>The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction (HER) is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water. Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity. Nevertheless, both the structural characteristics and the underlying mechanism are not well understood, especially for doping with two different atoms, thus limiting the use of these catalysts. We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres (HCNs) by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface, followed by doping with phytic acid and carbonization. The unique pore structure and defect-rich framework of the HCNs expose numerous active sites. Crucially, the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer. As a result, the HCN carbonized at 1100 °C exhibited superior HER activity and an outstanding stability (70 h at a current density of 10 mA cm<sup>−2</sup>) in alkaline water, because of the large number of graphitic nitrogen and phosphorus-carbon bonds.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (98KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 211-221"},"PeriodicalIF":5.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Porous nitrogen-doped carbon nanosheets derived from oil palm petioles for use as the sulfur host material in high-rate and durable Li-S batteries","authors":"Yu-si LIU , Xing-he ZHAO , Kai-xue WANG","doi":"10.1016/S1872-5805(25)60952-8","DOIUrl":"10.1016/S1872-5805(25)60952-8","url":null,"abstract":"<div><div>The composition and structure of the sulfur host material in lithium-sulfur batteries are the main reasons for differences in battery performance, and one that is both economical and environmentally friendly is needed for producing practical batteries. We have used an innovative method to prepare nitrogen-doped porous carbon nanosheets (N-PPCNs) from the petioles of palm trees. A nitrogen dopped material consisting of stacks of these nano-sheets was synthesized by soaking the petioles in urea followed by chemical activation. The porous carbon materials were uniformly doped with nitrogen and were used as the sulfur host material, which increased the adsorption energy of polysulfides and accelerated the conversion from long-chain polysulfides to short-chain polysulfides. The porous structure and nitrogen doping work together to suppress the “shuttle effect”, enabling the electrode to achieve a high specific capacity of 1257 mAh g<sup>−1</sup>, and still maintain a specific capacity of 490 mAh g<sup>−1</sup> after 500 cycles at a rate of 1 C. This work demonstrates the potential reuse of waste biomass.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 222-230"},"PeriodicalIF":5.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}