Sha-sha Zhao , Xiong Zhang , Chen Li , Ya-bin An , Tao Hu , Kai Wang , Xian-zhong Sun , Yan-wei Ma
{"title":"The application of metal–organic frameworks and their derivatives for lithium-ion capacitors","authors":"Sha-sha Zhao , Xiong Zhang , Chen Li , Ya-bin An , Tao Hu , Kai Wang , Xian-zhong Sun , Yan-wei Ma","doi":"10.1016/S1872-5805(24)60873-5","DOIUrl":"10.1016/S1872-5805(24)60873-5","url":null,"abstract":"<div><div>There is an urgent need for lithium-ion capacitors (LICs) that have both high energy and high power densities to meet the continuously growing energy storage demands. LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors (SCs). Nevertheless, the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode. Metal-organic frameworks (MOFs) and their derivatives have received significant attention because of their extensive specific surface area, different pore structures and topologies, and customizable functional sites, making them compelling candidate materials for achieving high-performance LICs. MOF-derived carbons, known for their exceptional electronic conductivity and large surface area, provide improved charge storage and rapid ion transport. MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability. Additionally, MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions, leading to a superior overall performance. The review begins with an overview of the fundamental principles of LICs, followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials. It then analyzes the advantages of original MOFs and their derived materials, such as carbon materials and metal compounds, in enhancing LIC performance. Finally, the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 5","pages":"Pages 872-895"},"PeriodicalIF":5.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The use of carbon-based particle electrodes in three-dimensional electrode reactors for wastewater treatment","authors":"Hua-yu Lu , Wei-feng Liu , Lei Qin , Xu-guang Liu","doi":"10.1016/S1872-5805(24)60882-6","DOIUrl":"10.1016/S1872-5805(24)60882-6","url":null,"abstract":"<div><div>The use of three-dimensional (3D) electrodes in water treatment is competitive because of their high catalytic efficiency, low energy consumption and promising development. The use of particle electrodes is a key research focus in this technology. They are usually in the form of particles that fill the space between the cathode and anode, and the selection of materials used is important. Carbon-based materials are widely used because of their large specific surface area, good adsorption performance, high chemical stability and low cost. The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized. The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 5","pages":"Pages 973-991"},"PeriodicalIF":5.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia-ping Zhang, Xiao-xuan Su, Xin-gang Li, Run-ning Wang, Qian-gang Fu
{"title":"Ablation behaviour and mechanical performance of ZrB2-ZrC-SiC modified carbon/carbon composites prepared by vacuum infiltration combined with reactive melt infiltration","authors":"Jia-ping Zhang, Xiao-xuan Su, Xin-gang Li, Run-ning Wang, Qian-gang Fu","doi":"10.1016/S1872-5805(24)60841-3","DOIUrl":"10.1016/S1872-5805(24)60841-3","url":null,"abstract":"<div><p>The development of advanced aircraft relies on high performance thermal-structural materials, and carbon/carbon composites (C/C) composited with ultrahigh-temperature ceramics are ideal candidates. However, the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix. Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi<sub>2</sub>, C/C-ZrB<sub>2</sub>-ZrC-SiC composites prepared by the vacuum infiltration of ZrB<sub>2</sub> combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases. The mass and linear ablation rates of the C/C-ZrB<sub>2</sub>-ZrC-SiC composites were respectively 68.9% and 29.7% lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration. The ablation performance was improved because the volatilization of B<sub>2</sub>O<sub>3</sub>, removes some of the heat, and the more uniformly distributed ZrO<sub>2</sub>, that helps produce a ZrO<sub>2</sub>-SiO<sub>2</sub> continuous protective layer, hinders oxygen infiltration and decreases ablation.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 633-644"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-zong He, Shi Chen, Zheng-kun Ma, Yong-gen Lu, Qi-lin Wu
{"title":"In-situ thermal Raman mapping and stress analysis of CNT/CF/epoxy interfaces","authors":"Jing-zong He, Shi Chen, Zheng-kun Ma, Yong-gen Lu, Qi-lin Wu","doi":"10.1016/S1872-5805(24)60874-7","DOIUrl":"10.1016/S1872-5805(24)60874-7","url":null,"abstract":"<div><p>A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability. CNT/carbon fiber (CF) hybrid fibers were constructed using electrophoretic deposition. The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium (CNTR) in a resin. The associated local thermal stress changes can be simulated by capturing the <em>G</em>‘ band position distribution of CNTR in the epoxy at different temperatures. It was found that the <em>G</em>‘ band shifted to lower positions with increasing temperature, reaching a maximum difference of 2.43 cm<sup>−1</sup> at 100 °C. The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment (20–100 °C) were investigated in detail. This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 703-714"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen-ge Song , Hong-jiu Zeng , Bin Wang , Xian-hong Huang , Xiao-ming Li , Guo-hua Sun
{"title":"A review of low-rank coal-based carbon materials","authors":"Wen-ge Song , Hong-jiu Zeng , Bin Wang , Xian-hong Huang , Xiao-ming Li , Guo-hua Sun","doi":"10.1016/S1872-5805(24)60872-3","DOIUrl":"10.1016/S1872-5805(24)60872-3","url":null,"abstract":"<div><p>Low-rank coals are highly regarded as valuable precursors for carbon materials because of their ample reserves, high levels of polycyclic aromatic hydrocarbons, substantial carbon content and cost-effectiveness. Nevertheless, challenges in precisely manipulating the structure and characteristics of carbon materials derived from low-rank coals stem from the differences in ash content, microstructure, and interfaces across various low-rank coal sources. Recent research has provided strategies for governing the microstructure and surface attributes of carbon materials derived from low-rank coals. This review provides an overview of strategies for the preparation of adsorption active carbon, capacitive carbon, hard carbon, graphite and nano-carbon materials from low-rank coals. It also examines the influence of coal type and processing techniques on the microstructure, interface properties and functional group in them. The applications of coal-derived carbon materials in adsorption, supercapacitors, and alkali metal batteries are explored, and potential avenues for future research and its challenges are considered.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 611-632"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cardo poly (ether sulfone) toughened E51/DETDA epoxy resin and its carbon fiber composites","authors":"Rong-peng Wu , Xing-hua Zhang , Xing-hai Wei , De-qi Jing , Wei-guo Su , Shou-chun Zhang","doi":"10.1016/S1872-5805(23)60741-3","DOIUrl":"10.1016/S1872-5805(23)60741-3","url":null,"abstract":"<div><p>A toughener that can effectively improve the interlaminar toughness in carbon fiber composites is crucial for various applications. We investigated, the toughening effects of phenolphthalein-based cardo poly (ether sulfone) (PES-C) on E51/ DETDA epoxy and its carbon fiber composites (CFCs). Scanning electron microscopy showed that the phase structures of PES-C/epoxy blends change from island (of dispersed phase) structures to bi-continuous structures (of the matrix) as the PES-C content increased, which is associated with reaction-induced phase separation. After adding 15 phr PES-C, the glass transition temperature (<em>T</em>g) of the blends increased by 51.5 °C, and the flexural strength, impact strength and fracture toughness of the blends were improved by 41.1%, 186.2% and 42.7%, respectively. These improvements could be attributed to the phase separation structure of the PES-C/epoxy system. A PES-C film was used to improve the mode-II fracture toughness (<em>G</em><sub>IIC</sub>) of CFCs. The <em>G</em><sub>IIC</sub> value of the 7 μm PES-C film toughened laminate was improved by 80.3% compared to that of the control laminate. The increase in <em>G</em><sub>IIC</sub> was attributed to cohesive failure and plastic deformation in the interleaving region.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 681-691"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen-sheng Chen , Lan-tao Liu , Zheng Wang, Chun-feng Duan, Xing-wei Zhang, Zhao-kun Ma, Xiao-hong Chen, Huai-he Song
{"title":"Formation of mesophase microbeads from bulk mesophase pitch induced by fullerene","authors":"Wen-sheng Chen , Lan-tao Liu , Zheng Wang, Chun-feng Duan, Xing-wei Zhang, Zhao-kun Ma, Xiao-hong Chen, Huai-he Song","doi":"10.1016/S1872-5805(24)60866-8","DOIUrl":"10.1016/S1872-5805(24)60866-8","url":null,"abstract":"<div><p>A transformation of naphthalene-based coalescenced mesophase pitch (NMP) to mesophase microbeads was achieved by heating a mixture of NMP and fullerene (C<sub>60</sub>). This is different from the conventional process of the liquid-phase carbonization of isotropic pitch to the emergence of carbon microbeads in the matrix and finally their growth to form a 100% anisotropic bulk mesophase, but rather a reverse transformation. The effects of C<sub>60</sub> loading and reaction temperature on the morphological transformation of mesophase were investigated by polarizing optical and scanning electron microscopies. The physical changes in the NMP induced by C<sub>60</sub> were characterized by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffractometry and Raman spectroscopy. The results show that the coalesced NMP can be converted to a spherical type at 300–320 °C with the addition of 5% C<sub>60</sub>, and the size of the mesophase microbeads increases with increasing temperature. Furthermore, a model is established to explain the unique induction effect of C<sub>60</sub> in the transformation process. This work makes the morphological transformation of MP controllable, and provides a new idea for the understanding and research of mesophase pitch.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 645-654"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feng Zhang , Bo-lan Li , Meng-xiao Jiao , Yan-bo Li , Xin Wang , Yu Yang , Yu-qiu Yang , Xiao-hua Zhang
{"title":"Polyetherketoneketone/carbon fiber composites with an amorphous interface prepared by solution impregnation","authors":"Feng Zhang , Bo-lan Li , Meng-xiao Jiao , Yan-bo Li , Xin Wang , Yu Yang , Yu-qiu Yang , Xiao-hua Zhang","doi":"10.1016/S1872-5805(22)60646-2","DOIUrl":"10.1016/S1872-5805(22)60646-2","url":null,"abstract":"<div><p>Interfacial adhesion between carbon fibers (CF) and polyetherketoneketone (PEKK) is a key factor that affects the mechanical performances of their composites. It is therefore of great importance to impregnate the CF bundles with PEKK as efficiently as possible. We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280, 320, 340 and 360 °C. The excellent wettability or infiltration of the PEKK solution guarantees a full covering and its tight binding to CFs, making it possible to evaluate the interfacial shear strength (IFSS) with the microdroplet method. The interior of the CF bundles is completely and uniformly filled with PEKK by solution impregnation, leading to a high interlaminar shear strength (ILSS). The maximum IFSS and ILSS reached 107.8 and 99.3 MPa, respectively. Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 692-702"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of a high-performance synthetic pitch from aromatic hydrocarbons containing N/Cl","authors":"Yu-kun Zhang, Xiong-chao Lin, Hong-feng Gao, Wen-shuai Xi, Cai-hong Wang, Yong-gang Wang","doi":"10.1016/S1872-5805(24)60864-4","DOIUrl":"10.1016/S1872-5805(24)60864-4","url":null,"abstract":"<div><p>The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecular level, which would be useful in fabrication. An isotropic synthetic pitch was prepared by a chlorine- and/or nitrogen-induced substitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N, which for this study were chloromethyl naphthalene and quinoline. This method was verified by investigating the structural changes under different synthesis conditions, and the synthesis mechanism induced by aromatics containing Cl was also probed. The result shows that the pyridinic N in quinoline contains a lone pair of electrons, and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl. The reaction between such free radicals causes strong homopolymerization and oligomerization. A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch. A linear molecular structure was formed by the Cl substitution reaction, which produced a highly spinnable pitch with a softening point of 258.6 °C, and carbon fibers with a tensile strength of 1 163.82 MPa were obtained. This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 655-667"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zi-hui Ma , Tao Yang , Yan Song , Wen-sheng Chen , Chun-feng Duan , Huai-he Song , Xiao-dong Tian , Xiang-jie Gong , Zheng-yang Liu , Zhan-jun Liu
{"title":"A review of the catalytic preparation of mesophase pitch","authors":"Zi-hui Ma , Tao Yang , Yan Song , Wen-sheng Chen , Chun-feng Duan , Huai-he Song , Xiao-dong Tian , Xiang-jie Gong , Zheng-yang Liu , Zhan-jun Liu","doi":"10.1016/S1872-5805(24)60862-0","DOIUrl":"10.1016/S1872-5805(24)60862-0","url":null,"abstract":"<div><p>Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance carbon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperatures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly improve the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pretreatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a catalyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 4","pages":"Pages 583-610"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}