Sha-sha Zhao , Xiong Zhang , Chen Li , Ya-bin An , Tao Hu , Kai Wang , Xian-zhong Sun , Yan-wei Ma
{"title":"金属有机框架及其衍生物在锂离子电容器中的应用","authors":"Sha-sha Zhao , Xiong Zhang , Chen Li , Ya-bin An , Tao Hu , Kai Wang , Xian-zhong Sun , Yan-wei Ma","doi":"10.1016/S1872-5805(24)60873-5","DOIUrl":null,"url":null,"abstract":"<div><div>There is an urgent need for lithium-ion capacitors (LICs) that have both high energy and high power densities to meet the continuously growing energy storage demands. LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors (SCs). Nevertheless, the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode. Metal-organic frameworks (MOFs) and their derivatives have received significant attention because of their extensive specific surface area, different pore structures and topologies, and customizable functional sites, making them compelling candidate materials for achieving high-performance LICs. MOF-derived carbons, known for their exceptional electronic conductivity and large surface area, provide improved charge storage and rapid ion transport. MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability. Additionally, MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions, leading to a superior overall performance. The review begins with an overview of the fundamental principles of LICs, followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials. It then analyzes the advantages of original MOFs and their derived materials, such as carbon materials and metal compounds, in enhancing LIC performance. Finally, the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 5","pages":"Pages 872-895"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The application of metal–organic frameworks and their derivatives for lithium-ion capacitors\",\"authors\":\"Sha-sha Zhao , Xiong Zhang , Chen Li , Ya-bin An , Tao Hu , Kai Wang , Xian-zhong Sun , Yan-wei Ma\",\"doi\":\"10.1016/S1872-5805(24)60873-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There is an urgent need for lithium-ion capacitors (LICs) that have both high energy and high power densities to meet the continuously growing energy storage demands. LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors (SCs). Nevertheless, the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode. Metal-organic frameworks (MOFs) and their derivatives have received significant attention because of their extensive specific surface area, different pore structures and topologies, and customizable functional sites, making them compelling candidate materials for achieving high-performance LICs. MOF-derived carbons, known for their exceptional electronic conductivity and large surface area, provide improved charge storage and rapid ion transport. MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability. Additionally, MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions, leading to a superior overall performance. The review begins with an overview of the fundamental principles of LICs, followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials. It then analyzes the advantages of original MOFs and their derived materials, such as carbon materials and metal compounds, in enhancing LIC performance. Finally, the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.</div></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"39 5\",\"pages\":\"Pages 872-895\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580524608735\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608735","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
The application of metal–organic frameworks and their derivatives for lithium-ion capacitors
There is an urgent need for lithium-ion capacitors (LICs) that have both high energy and high power densities to meet the continuously growing energy storage demands. LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors (SCs). Nevertheless, the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode. Metal-organic frameworks (MOFs) and their derivatives have received significant attention because of their extensive specific surface area, different pore structures and topologies, and customizable functional sites, making them compelling candidate materials for achieving high-performance LICs. MOF-derived carbons, known for their exceptional electronic conductivity and large surface area, provide improved charge storage and rapid ion transport. MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability. Additionally, MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions, leading to a superior overall performance. The review begins with an overview of the fundamental principles of LICs, followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials. It then analyzes the advantages of original MOFs and their derived materials, such as carbon materials and metal compounds, in enhancing LIC performance. Finally, the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.