Controlling the conductivity and microporosity of biocarbon to produce supercapacitors with battery-level energies at an ultrahigh power

IF 5.7 3区 材料科学 Q2 Materials Science
Bei CHENG , Xing-yan XIE , Liu WAN , Jian CHEN , Yan ZHANG , Cheng DU , Xue-feng GUO , Ming-jiang XIE
{"title":"Controlling the conductivity and microporosity of biocarbon to produce supercapacitors with battery-level energies at an ultrahigh power","authors":"Bei CHENG ,&nbsp;Xing-yan XIE ,&nbsp;Liu WAN ,&nbsp;Jian CHEN ,&nbsp;Yan ZHANG ,&nbsp;Cheng DU ,&nbsp;Xue-feng GUO ,&nbsp;Ming-jiang XIE","doi":"10.1016/S1872-5805(25)60960-7","DOIUrl":null,"url":null,"abstract":"<div><div>In order to meet the demands of new-generation electric vehicles that require high power output (over 15 kW/kg), it is crucial to increase the energy density of carbon-based supercapacitors to a level comparable to that of batteries, while maintaining a high power density. We report a porous carbon material produced by immersing poplar wood (PW) sawdust in a solution of KOH and graphene oxide (GO), followed by carbonization. The resulting material has exceptional properties as an electrode for high-energy supercapacitors. Compared to the material prepared by the direct carbonization of PW, its electrical conductivity was increased from 0.36 to 26.3 S/cm. Because of this and a high microporosity of over 80%, which provides fast electron channels and a large ion storage surface, when used as the electrodes for a symmetric supercapacitor, it gave a high energy density of 27.9 Wh/[email protected] kW/kg in an aqueous electrolyte of 1.0 mol/L Na<sub>2</sub>SO<sub>4</sub>. The device also had battery-level energy storage with maximum energy densities of 73.9 Wh/[email protected] kW/kg and 67.6 Wh/kg@40 kW/kg, an ultrahigh power density, in an organic electrolyte of 1.0 mol/L TEABF<sub>4</sub>/AN. These values are comparable to those of 30−45 Wh/kg for Pb-acid batteries and 30−55 Wh/kg for aqueous lithium batteries. This work indicates a way to prepare carbon materials that can be used in supercapacitors with ultrahigh energy and power densities.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (106KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 2","pages":"Pages 397-407"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609607","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

In order to meet the demands of new-generation electric vehicles that require high power output (over 15 kW/kg), it is crucial to increase the energy density of carbon-based supercapacitors to a level comparable to that of batteries, while maintaining a high power density. We report a porous carbon material produced by immersing poplar wood (PW) sawdust in a solution of KOH and graphene oxide (GO), followed by carbonization. The resulting material has exceptional properties as an electrode for high-energy supercapacitors. Compared to the material prepared by the direct carbonization of PW, its electrical conductivity was increased from 0.36 to 26.3 S/cm. Because of this and a high microporosity of over 80%, which provides fast electron channels and a large ion storage surface, when used as the electrodes for a symmetric supercapacitor, it gave a high energy density of 27.9 Wh/[email protected] kW/kg in an aqueous electrolyte of 1.0 mol/L Na2SO4. The device also had battery-level energy storage with maximum energy densities of 73.9 Wh/[email protected] kW/kg and 67.6 Wh/kg@40 kW/kg, an ultrahigh power density, in an organic electrolyte of 1.0 mol/L TEABF4/AN. These values are comparable to those of 30−45 Wh/kg for Pb-acid batteries and 30−55 Wh/kg for aqueous lithium batteries. This work indicates a way to prepare carbon materials that can be used in supercapacitors with ultrahigh energy and power densities.
  1. Download: Download high-res image (106KB)
  2. Download: Download full-size image
控制生物碳的导电性和微孔隙度,以生产具有电池级能量的超高功率超级电容器
为了满足新一代电动汽车对高输出功率(超过15kw /kg)的需求,在保持高功率密度的同时,将碳基超级电容器的能量密度提高到与电池相当的水平至关重要。我们报道了一种多孔碳材料,将杨木(PW)锯末浸入KOH和氧化石墨烯(GO)的溶液中,然后碳化。所得到的材料作为高能超级电容器的电极具有特殊的性能。与PW直接碳化制备的材料相比,其电导率由0.36提高到26.3 S/cm。由于这一点和超过80%的高微孔隙率,提供了快速的电子通道和大的离子存储表面,当用作对称超级电容器的电极时,它在1.0 mol/L Na2SO4的水电解质中提供了27.9 Wh/[email protected] kW/kg的高能量密度。在1.0 mol/L TEABF4/ an的有机电解质中,该装置还具有电池级能量存储,最大能量密度为73.9 Wh/[email protected] kW/kg和67.6 Wh/kg@40 kW/kg,具有超高的功率密度。这些值与铅酸电池的30 - 45 Wh/kg和水锂电池的30 - 55 Wh/kg相当。这项工作指出了一种制备碳材料的方法,可以用于具有超高能量和功率密度的超级电容器。下载:下载高清图片(106KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信