Baratta Mariafrancesca , Vladimirovich Nezhdanov Aleksey , Valentinovich Ershov Aleksey , Aiello Donatella , Napoli Anna , Di Donna Leonardo , Ivanovic Mashin Alexandr , Pasquale Nicoletta Fiore , De Filpo Giovanni
{"title":"Improving the catalytic performance of TiO2 by its surface deposition on CNT buckypapers for use in the removal of wastewater pollutants","authors":"Baratta Mariafrancesca , Vladimirovich Nezhdanov Aleksey , Valentinovich Ershov Aleksey , Aiello Donatella , Napoli Anna , Di Donna Leonardo , Ivanovic Mashin Alexandr , Pasquale Nicoletta Fiore , De Filpo Giovanni","doi":"10.1016/S1872-5805(25)60966-8","DOIUrl":null,"url":null,"abstract":"<div><div>Buckypapers (BPs) consist of carbon nanotube (CNT) membranes with good mechanical, thermal and electrical properties. We report the modification of CNT buckypapers by the surface deposition of a thin layer of titanium dioxide and their subsequent photocatalytic use for the removal of three wastewater pollutants: diclofenac (DF), carbofuran (CB) and methylene blue (MB). The results show the following decreases (RE) in the initial concentrations of these pollutants, RE<sub>DF</sub>=99.5%, RE<sub>MB</sub>=96% and RE<sub>CB</sub>=90% after 90 min of exposure to UV-Vis radiation using 0.6 mg of photocatalyst. Experiments also showed that the degradation rate of diclofenac (<em>k</em> = 0.1028 min<sup>−1</sup>) is respectively 3.5 and 6 times faster than the values for CB (<em>k</em> = 0.0298 min<sup>−1</sup>) and MB (<em>k</em> = 0.0174 min<sup>−1</sup>), probably due to the easier bond cleavage in DF. UV-Vis irradiated solutions of these pollutants were then analyzed by mass spectrometry to identify the species formed during photocatalysis and suggest possible degradation paths for MB, DF, and CB. Data showed that the degradation of DF involves the formation of a photocyclization product through loss of HCl molecule, clearly consuming less energy than that needed for the opening of the central aromatic ring in MB, or the loss of the N-methyl amide functional group for CB.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (97KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 2","pages":"Pages 438-455"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609668","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Buckypapers (BPs) consist of carbon nanotube (CNT) membranes with good mechanical, thermal and electrical properties. We report the modification of CNT buckypapers by the surface deposition of a thin layer of titanium dioxide and their subsequent photocatalytic use for the removal of three wastewater pollutants: diclofenac (DF), carbofuran (CB) and methylene blue (MB). The results show the following decreases (RE) in the initial concentrations of these pollutants, REDF=99.5%, REMB=96% and RECB=90% after 90 min of exposure to UV-Vis radiation using 0.6 mg of photocatalyst. Experiments also showed that the degradation rate of diclofenac (k = 0.1028 min−1) is respectively 3.5 and 6 times faster than the values for CB (k = 0.0298 min−1) and MB (k = 0.0174 min−1), probably due to the easier bond cleavage in DF. UV-Vis irradiated solutions of these pollutants were then analyzed by mass spectrometry to identify the species formed during photocatalysis and suggest possible degradation paths for MB, DF, and CB. Data showed that the degradation of DF involves the formation of a photocyclization product through loss of HCl molecule, clearly consuming less energy than that needed for the opening of the central aromatic ring in MB, or the loss of the N-methyl amide functional group for CB.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.