{"title":"具有高通平面导热系数的介碳微珠新型热界面材料","authors":"Zhi-peng SUN, Cheng MA, Ji-tong WANG, Wen-ming QIAO, Li-cheng LING","doi":"10.1016/S1872-5805(25)60964-4","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid development of the information era has led to increased power consumption, which generates more heat. This requires more efficient thermal management systems, with the most direct approach being the development of superior thermal interface materials (TIMs). Mesocarbon microbeads (MCMBs) have several desirable properties for this purpose, including high thermal conductivity and excellent thermal stability. Although their thermal conductivity (<em>K</em>) may not be exceptional among all carbon materials, their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs. We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide (PI) framework, producing highly graphitized PI/MCMB (PM) foams and anisotropic polydimethylsiloxane/PM (PDMS/PM) composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing. The resulting materials had a high through-plane (TP) <em>K</em> of 15.926 W·m<sup>−1</sup>·K<sup>−1</sup>, 4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS. The composites had excellent mechanical properties and thermal stability, meeting the demands of modern electronic products for integration, multi-functionality, and miniaturization.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (60KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 2","pages":"Pages 422-437"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel thermal interface materials based on mesocarbon microbeads with a high through-plane thermal conductivity\",\"authors\":\"Zhi-peng SUN, Cheng MA, Ji-tong WANG, Wen-ming QIAO, Li-cheng LING\",\"doi\":\"10.1016/S1872-5805(25)60964-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid development of the information era has led to increased power consumption, which generates more heat. This requires more efficient thermal management systems, with the most direct approach being the development of superior thermal interface materials (TIMs). Mesocarbon microbeads (MCMBs) have several desirable properties for this purpose, including high thermal conductivity and excellent thermal stability. Although their thermal conductivity (<em>K</em>) may not be exceptional among all carbon materials, their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs. We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide (PI) framework, producing highly graphitized PI/MCMB (PM) foams and anisotropic polydimethylsiloxane/PM (PDMS/PM) composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing. The resulting materials had a high through-plane (TP) <em>K</em> of 15.926 W·m<sup>−1</sup>·K<sup>−1</sup>, 4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS. The composites had excellent mechanical properties and thermal stability, meeting the demands of modern electronic products for integration, multi-functionality, and miniaturization.\\n\\t\\t\\t\\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (60KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"40 2\",\"pages\":\"Pages 422-437\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580525609644\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609644","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Novel thermal interface materials based on mesocarbon microbeads with a high through-plane thermal conductivity
The rapid development of the information era has led to increased power consumption, which generates more heat. This requires more efficient thermal management systems, with the most direct approach being the development of superior thermal interface materials (TIMs). Mesocarbon microbeads (MCMBs) have several desirable properties for this purpose, including high thermal conductivity and excellent thermal stability. Although their thermal conductivity (K) may not be exceptional among all carbon materials, their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs. We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide (PI) framework, producing highly graphitized PI/MCMB (PM) foams and anisotropic polydimethylsiloxane/PM (PDMS/PM) composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing. The resulting materials had a high through-plane (TP) K of 15.926 W·m−1·K−1, 4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS. The composites had excellent mechanical properties and thermal stability, meeting the demands of modern electronic products for integration, multi-functionality, and miniaturization.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.