Chun-yu LI, Ming-hui ZHANG, Xin-yue LANG, Ye CHEN, Yan-feng DONG
{"title":"The low-temperature deposition of a zincophilic carbon layer on the Zn foil for long-life zinc metal batteries","authors":"Chun-yu LI, Ming-hui ZHANG, Xin-yue LANG, Ye CHEN, Yan-feng DONG","doi":"10.1016/S1872-5805(25)60947-4","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc metal batteries (ZMBs) which are environmentally benign and cheap can be used for grid-scale energy storage, but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes. A zincophilic carbon (ZC) layer was deposited on a Zn metal foil at 450 °C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework, assembled from melamine (ME) and cyanuric acid (CA). The zincophilic groups (C=O and C=N) in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions. so that assembled symmetrical batteries (ZC@Zn//ZC@Zn) have a long-term service life of 2500 h at 1 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>, which is much longer than that of bare Zn anodes (180 h). In addition, ZC@Zn//V<sub>2</sub>O<sub>5</sub> full batteries have a higher capacity of 174 mAh g<sup>−1</sup> after 1200 cycles at 2 A g<sup>−1</sup> than a Zn//V<sub>2</sub>O<sub>5</sub> counterpart (100 mAh g<sup>−1</sup>). The strategy developed for the low-temperature deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (157KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 178-187"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609474","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc metal batteries (ZMBs) which are environmentally benign and cheap can be used for grid-scale energy storage, but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes. A zincophilic carbon (ZC) layer was deposited on a Zn metal foil at 450 °C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework, assembled from melamine (ME) and cyanuric acid (CA). The zincophilic groups (C=O and C=N) in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions. so that assembled symmetrical batteries (ZC@Zn//ZC@Zn) have a long-term service life of 2500 h at 1 mA cm−2 and 1 mAh cm−2, which is much longer than that of bare Zn anodes (180 h). In addition, ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g−1 after 1200 cycles at 2 A g−1 than a Zn//V2O5 counterpart (100 mAh g−1). The strategy developed for the low-temperature deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.