Tengfei Liu, Haiyue Liu, Wenfei Xian, Zhi Liu, Yaqin Yuan, Jingwei Fan, Shuaiying Xiang, Xia Yang, Yucheng Liu, Shulin Liu, Min Zhang, Yanting Shen, Yuannian Jiao, Shifeng Cheng, Jeff J. Doyle, Fang Xie, Jiayang Li, Zhixi Tian
{"title":"Duplication and sub-functionalization of flavonoid biosynthesis genes plays important role in Leguminosae root nodule symbiosis evolution","authors":"Tengfei Liu, Haiyue Liu, Wenfei Xian, Zhi Liu, Yaqin Yuan, Jingwei Fan, Shuaiying Xiang, Xia Yang, Yucheng Liu, Shulin Liu, Min Zhang, Yanting Shen, Yuannian Jiao, Shifeng Cheng, Jeff J. Doyle, Fang Xie, Jiayang Li, Zhixi Tian","doi":"10.1111/jipb.13743","DOIUrl":"10.1111/jipb.13743","url":null,"abstract":"<div>\u0000 \u0000 <p>Gene innovation plays an essential role in trait evolution. Rhizobial symbioses, the most important N<sub>2</sub>-fixing agent in agricultural systems that exists mainly in Leguminosae, is one of the most attractive evolution events. However, the gene innovations underlying Leguminosae root nodule symbiosis (RNS) remain largely unknown. Here, we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses. We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection. Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways, particular downstream of chalcone synthase (CHS). Among them, Leguminosae-gain type Ⅱ chalcone isomerase (CHI) could be further divided into CHI1A and CHI1B clades, which resulted from the products of tandem duplication. Furthermore, the duplicated <i>CHI</i> genes exhibited exon–intron structural divergences evolved through exon/intron gain/loss and insertion/deletion. Knocking down <i>CHI1B</i> significantly reduced nodulation in <i>Glycine max</i> (soybean) and <i>Medicago truncatula</i>; whereas, knocking down its duplication gene <i>CHI1A</i> had no effect on nodulation. Therefore, Leguminosae-gain type Ⅱ <i>CHI</i> participated in RNS and the duplicated <i>CHI1A</i> and <i>CHI1B</i> genes exhibited RNS functional divergence. This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 10","pages":"2191-2207"},"PeriodicalIF":9.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Hao Tian, Wen Yan Cai, Chun Quan Zhu, Ya Li Kong, Xiao Chuang Cao, Lian Feng Zhu, Jia Yuan Ye, Jun Hua Zhang, Shao Jian Zheng
{"title":"STOP1 regulates CCX1-mediated Ca2+ homeostasis for plant adaptation to Ca2+ deprivation","authors":"Wen Hao Tian, Wen Yan Cai, Chun Quan Zhu, Ya Li Kong, Xiao Chuang Cao, Lian Feng Zhu, Jia Yuan Ye, Jun Hua Zhang, Shao Jian Zheng","doi":"10.1111/jipb.13754","DOIUrl":"10.1111/jipb.13754","url":null,"abstract":"<div>\u0000 \u0000 <p>Calcium (Ca) is essential for plant growth and stress adaptation, yet its availability is often limited in acidic soils, posing a major threat to crop production. Understanding the intricate mechanisms orchestrating plant adaptation to Ca deficiency remains elusive. Here, we show that the Ca deficiency-enhanced nuclear accumulation of the transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) in <i>Arabidopsis thaliana</i> confers tolerance to Ca deprivation, with the global transcriptional responses triggered by Ca deprivation largely impaired in the <i>stop1</i> mutant. Notably, STOP1 activates the Ca deprivation-induced expression of <i>CATION/Ca</i><sup><i>2+</i></sup> <i>EXCHANGER 1</i> (<i>CCX1</i>) by directly binding to its promoter region, which facilitates Ca<sup>2+</sup> efflux from endoplasmic reticulum to cytosol to maintain Ca homeostasis. Consequently, the constitutive expression of <i>CCX1</i> in the <i>stop1</i> mutant partially rescues the Ca deficiency phenotype by increasing Ca content in the shoots. These findings uncover the pivotal role of the STOP1-CCX1 axis in plant adaptation to low Ca, offering alternative manipulating strategies to improve plant Ca nutrition in acidic soils and extending our understanding of the multifaceted role of STOP1.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 10","pages":"2126-2139"},"PeriodicalIF":9.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huai-Yu Zhao, Jun-Xiang Shan, Wang-Wei Ye, Nai-Qian Dong, Yi Kan, Yi-Bing Yang, Hong-Xiao Yu, Zi-Qi Lu, Shuang-Qin Guo, Jie-Jie Lei, Ben Liao, Hong-Xuan Lin
{"title":"A QTL GN1.1, encoding FT-L1, regulates grain number and yield by modulating polar auxin transport in rice","authors":"Huai-Yu Zhao, Jun-Xiang Shan, Wang-Wei Ye, Nai-Qian Dong, Yi Kan, Yi-Bing Yang, Hong-Xiao Yu, Zi-Qi Lu, Shuang-Qin Guo, Jie-Jie Lei, Ben Liao, Hong-Xuan Lin","doi":"10.1111/jipb.13749","DOIUrl":"10.1111/jipb.13749","url":null,"abstract":"<div>\u0000 \u0000 <p>Rice grain number is a crucial agronomic trait impacting yield. In this study, we characterized a quantitative trait locus (QTL), <i>GRAIN NUMBER 1.1</i> (<i>GN1.1</i>), which encodes a Flowering Locus T-like1 (FT-L1) protein and acts as a negative regulator of grain number in rice. The elite allele <i>GN1.1</i><sup><i>B</i></sup>, derived from the <i>Oryza indica</i> variety, BF3-104, exhibits a 14.6% increase in grain yield compared with the <i>O. japonica</i> variety, Nipponbare, based on plot yield tests. We demonstrated that GN1.1 interacted with and enhanced the stability of ADP-ribosylation factor (Arf)-GTPase-activating protein (Gap), OsZAC. Loss of function of <i>OsZAC</i> results in increased grain number. Based on our data, we propose that <i>GN1.1</i><sup><i>B</i></sup> facilitates the elevation of auxin content in young rice panicles by affecting polar auxin transport (PAT) through interaction with <i>OsZAC</i>. Our study unveils the pivotal role of the <i>GN1.1</i> locus in rice panicle development and presents a novel, promising allele for enhancing rice grain yield through genetic improvement.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 10","pages":"2158-2174"},"PeriodicalIF":9.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein S-acylation, a new panacea for plant fitness","authors":"Fei Liu, Jin-Yu Lu, Sha Li, Yan Zhang","doi":"10.1111/jipb.13750","DOIUrl":"10.1111/jipb.13750","url":null,"abstract":"<div>\u0000 \u0000 <p>Protein <i>S</i>-acylation or palmitoylation is a reversible post-translational modification that influences many proteins encoded in plant genomes. Exciting progress in the past 3 years demonstrates that <i>S</i>-acylation modulates subcellular localization, interacting profiles, activity, or turnover of substrate proteins in plants, participating in developmental processes and responses to abiotic or biotic stresses. In this review, we summarize and discuss the role of <i>S</i>-acylation in the targeting of substrate proteins. We highlight complex roles of <i>S</i>-acylation in receptor signaling. We also point out that feedbacks of protein <i>S</i>-acyl transferase by signaling initiated from their substrate proteins may be a recurring theme. Finally, the reversibility of <i>S</i>-acylation makes it a rapid and efficient way to respond to environmental cues. Future efforts on exploring these important aspects of <i>S</i>-acylation will give a better understanding of how plants enhance their fitness under ever changing and often harsh environments.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 10","pages":"2102-2108"},"PeriodicalIF":9.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyewon Cho, Dain Seo, Minsoo Kim, Bo Eun Nam, Soyoun Ahn, Minju Kang, Geul Bang, Choon-Tak Kwon, Youngsung Joo, Eunkyoo Oh
{"title":"SERKs serve as co-receptors for SYR1 to trigger systemin-mediated defense responses in tomato","authors":"Hyewon Cho, Dain Seo, Minsoo Kim, Bo Eun Nam, Soyoun Ahn, Minju Kang, Geul Bang, Choon-Tak Kwon, Youngsung Joo, Eunkyoo Oh","doi":"10.1111/jipb.13747","DOIUrl":"10.1111/jipb.13747","url":null,"abstract":"<p>Systemin, the first peptide hormone identified in plants, was initially isolated from tomato (<i>Solanum lycopersicum</i>) leaves. Systemin mediates local and systemic wound-induced defense responses in plants, conferring resistance to necrotrophic fungi and herbivorous insects. Systemin is recognized by the leucine-rich-repeat receptor-like kinase (LRR-RLK) receptor SYSTEMIN RECEPTOR1 (SYR1), but how the systemin recognition signal is transduced to intracellular signaling pathways to trigger defense responses is poorly understood. Here, we demonstrate that SERK family LRR-RLKs function as co-receptors for SYR1 to mediate systemin signal transduction in tomato. By using chemical genetic approaches coupled with engineered receptors, we revealed that the association of the cytoplasmic kinase domains of SYR1 with SERKs leads to their mutual trans-phosphorylation and the activation of SYR1, which in turn induces a wide range of defense responses. Systemin stimulates the association between SYR1 and all tomato SERKs (SlSERK1, SlSERK3A, and SlSERK3B). The resulting SYR1-SlSERK heteromeric complexes trigger the phosphorylation of TOMATO PROTEIN KINASE 1B (TPK1b), a receptor-like cytoplasmic kinase that positively regulates systemin responses. Additionally, upon association with SYR1, SlSERKs are cleaved by the <i>Pseudomonas syringae</i> effector HopB1, further supporting the finding that SlSERKs are activated by systemin-bound SYR1. Finally, genetic analysis using <i>Slserk</i> mutants showed that SlSERKs are essential for systemin-mediated defense responses. Collectively, these findings demonstrate that the systemin-mediated association of SYR1 and SlSERKs activates defense responses against herbivorous insects.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 10","pages":"2273-2287"},"PeriodicalIF":9.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13747","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaoqing Song, Wanying Ye, Qing Jiang, Huan Lin, Qing Hu, Yuntao Xiao, Yeting Bian, Fengyue Zhao, Jie Dong, Dongqing Xu
{"title":"BBX9 forms feedback loops with PIFs and BBX21 to promote photomorphogenic development","authors":"Zhaoqing Song, Wanying Ye, Qing Jiang, Huan Lin, Qing Hu, Yuntao Xiao, Yeting Bian, Fengyue Zhao, Jie Dong, Dongqing Xu","doi":"10.1111/jipb.13746","DOIUrl":"10.1111/jipb.13746","url":null,"abstract":"<div>\u0000 \u0000 <p>Light is one of the most essential environmental factors that tightly and precisely control various physiological and developmental processes in plants. B-box CONTAINING PROTEINs (BBXs) play central roles in the regulation of light-dependent development. In this study, we report that BBX9 is a positive regulator of light signaling. BBX9 interacts with the red light photoreceptor PHYTOCHROME B (phyB) and transcription factors PHYTOCHROME-INTERACTING FACTORs (PIFs). phyB promotes the stabilization of BBX9 in light, while BBX9 inhibits the transcriptional activation activity of PIFs. In turn, PIFs directly bind to the promoter of <i>BBX9</i> to repress its transcription. On the other hand, BBX9 associates with the positive regulator of light signaling, BBX21, and enhances its biochemical activity. BBX21 associates with the promoter regions of <i>BBX9</i> and transcriptionally up-regulates its expression. Collectively, this study unveiled that BBX9 forms a negative feedback loop with PIFs and a positive one with BBX21 to ensure that plants adapt to fluctuating light conditions.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 9","pages":"1934-1952"},"PeriodicalIF":9.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13746","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The actin motor protein OsMYA1 associates with OsExo70H1 and contributes to rice secretory defense by modulating OsSyp121 distribution","authors":"Yuan-Bao Li, Chengyu Liu, Ningning Shen, Shuai Zhu, Xianya Deng, Zixuan Liu, Li-Bo Han, Dingzhong Tang","doi":"10.1111/jipb.13744","DOIUrl":"10.1111/jipb.13744","url":null,"abstract":"<div>\u0000 \u0000 <p><i>Magnaporthe oryzae</i> (<i>M. oryzae</i>) is a devastating hemibiotrophic pathogen. Its biotrophic invasive hyphae (IH) are enclosed in the extrainvasive hyphal membrane produced by plant cells, thus generating a front line of the battlefield between the pathogen and the host plants. In plants, defense-related complexes such as proteins, callose-rich materials and vesicles, are directionally secreted to this interface to confer defense responses, but the underlying molecular mechanism is poorly understood. In this study, we found that a Myosin gene, <i>Myosin A1</i> (<i>OsMYA1</i>), contributed to rice defense. The <i>OsMYA1</i> knockout mutant exhibited decreased resistance to <i>M. oryzae</i> infection. OsMYA1 localizes to the actin cytoskeleton and surrounds the IH of <i>M. oryzae</i>. OsMYA1 interacts with an exocyst subunit, OsExo70H1, and regulates its accumulation at the plasma membrane (PM) and pathogen–plant interface. Furthermore, OsExo70H1 interacted with the rice syntaxin of the plants121 protein (OsSyp121), and the distribution of OsSyp121 to the PM or the pathogen–plant interface was disrupted in both the <i>OsMYA1</i> and <i>OsExo70H1</i> mutants. Overall, these results not only reveal a new function of OsMYA1 in rice blast resistance, but also uncover a molecular mechanism by which plants regulate defense against <i>M. oryzae</i> by OsMYA1-initiated vesicle secretory pathway, which originates from the actin cytoskeleton to the PM.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 9","pages":"2058-2075"},"PeriodicalIF":9.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13744","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simultaneous mutations in ITPK4 and MRP5 genes result in a low phytic acid level without compromising salt tolerance in Arabidopsis","authors":"Yuying Ren, Mengdan Jiang, Jian-Kang Zhu, Wenkun Zhou, Chunzhao Zhao","doi":"10.1111/jipb.13745","DOIUrl":"10.1111/jipb.13745","url":null,"abstract":"<div>\u0000 \u0000 <p>Generation of crops with low phytic acid (<i>myo</i>-inositol-1,2,3,4,5,6-hexakisphosphate (InsP<sub>6</sub>)) is an important breeding direction, but such plants often display less desirable agronomic traits. In this study, through ethyl methanesulfonate-mediated mutagenesis, we found that inositol 1,3,4-trisphosphate 5/6-kinase 4 (ITPK4), which is essential for producing InsP<sub>6</sub>, is a critical regulator of salt tolerance in <i>Arabidopsis</i>. Loss of function of <i>ITPK4</i> gene leads to reduced root elongation under salt stress, which is primarily because of decreased root meristem length and reduced meristematic cell number. The <i>itpk4</i> mutation also results in increased root hair density and increased accumulation of reactive oxygen species during salt exposure. RNA sequencing assay reveals that several auxin-responsive genes are down-regulated in the <i>itpk4-1</i> mutant compared to the wild-type. Consistently, the <i>itpk4-1</i> mutant exhibits a reduced auxin level in the root tip and displays compromised gravity response, indicating that ITPK4 is involved in the regulation of the auxin signaling pathway. Through suppressor screening, it was found that mutation of <i>Multidrug Resistance Protein 5</i> (<i>MRP5</i>)<i>5</i> gene, which encodes an ATP-binding cassette (ABC) transporter required for transporting InsP<sub>6</sub> from the cytoplasm into the vacuole, fully rescues the salt hypersensitivity of the <i>itpk4-1</i> mutant, but in the <i>itpk4-1 mrp5</i> double mutant, InsP<sub>6</sub> remains at a very low level. These results imply that InsP<sub>6</sub> homeostasis rather than its overall amount is beneficial for stress tolerance in plants. Collectively, this study uncovers a pair of gene mutations that confer low InsP<sub>6</sub> content without impacting stress tolerance, which offers a new strategy for creating “low-phytate” crops.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 10","pages":"2109-2125"},"PeriodicalIF":9.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green light mediates atypical photomorphogenesis by dual modulation of Arabidopsis phytochromes B and A","authors":"Miqi Xu, Yi-Yuan Wang, Yujie Wu, Xiuhong Zhou, Ziyan Shan, Kunying Tao, Kaiqiang Qian, Xuncheng Wang, Jian Li, Qingqing Wu, Xing Wang Deng, Jun-Jie Ling","doi":"10.1111/jipb.13742","DOIUrl":"10.1111/jipb.13742","url":null,"abstract":"<div>\u0000 \u0000 <p>Although green light (GL) is located in the middle of the visible light spectrum and regulates a series of plant developmental processes, the mechanism by which it regulates seedling development is largely unknown. In this study, we demonstrated that GL promotes atypical photomorphogenesis in <i>Arabidopsis thaliana</i> via the dual regulations of phytochrome B (phyB) and phyA. Although the Pr-to-Pfr conversion rates of phyB and phyA under GL were lower than those under red light (RL) in a fluence rate-dependent and time-dependent manner, long-term treatment with GL induced high Pfr/Pr ratios of phyB and phyA. Moreover, GL induced the formation of numerous small phyB photobodies in the nucleus, resulting in atypical photomorphogenesis, with smaller cotyledon opening angles and longer hypocotyls in seedlings compared to RL. The abundance of phyA significantly decreased after short- and long-term GL treatments. We determined that four major PHYTOCHROME-INTERACTING FACTORs (PIFs: PIF1, PIF3, PIF4, and PIF5) act downstream of phyB in GL-mediated cotyledon opening. In addition, GL plays opposite roles in regulating different PIFs. For example, under continuous GL, the protein levels of all PIFs decreased, whereas the transcript levels of <i>PIF4</i> and <i>PIF5</i> strongly increased compared with dark treatment. Taken together, our work provides a detailed molecular framework for understanding the role of the antagonistic regulations of phyB and phyA in GL-mediated atypical photomorphogenesis.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 9","pages":"1915-1933"},"PeriodicalIF":9.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13742","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shan Li, Yu Zhao, Pan Wu, Donald Grierson, Lei Gao
{"title":"Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits","authors":"Shan Li, Yu Zhao, Pan Wu, Donald Grierson, Lei Gao","doi":"10.1111/jipb.13739","DOIUrl":"10.1111/jipb.13739","url":null,"abstract":"<p>Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (<i>Solanum lycopersicum</i>). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 9","pages":"1831-1863"},"PeriodicalIF":9.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13739","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}