Genome-wide association studies reveal genetic diversity and regulatory loci underlying dwarfing traits in banana.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yuqi Li, Junting Feng, Liu Yan, Shouxing Wei, Huigang Hu, Juhua Liu, Yixian Xie, Bingyu Cai, Kai Li, Yankun Zhao, Yufeng Chen, Qifeng Cheng, Miaomiao Cao, Yi Wang, Yongzan Wei, Wei Li, Wei Wang, Jianghui Xie, Zhenhai Han
{"title":"Genome-wide association studies reveal genetic diversity and regulatory loci underlying dwarfing traits in banana.","authors":"Yuqi Li, Junting Feng, Liu Yan, Shouxing Wei, Huigang Hu, Juhua Liu, Yixian Xie, Bingyu Cai, Kai Li, Yankun Zhao, Yufeng Chen, Qifeng Cheng, Miaomiao Cao, Yi Wang, Yongzan Wei, Wei Li, Wei Wang, Jianghui Xie, Zhenhai Han","doi":"10.1111/jipb.70002","DOIUrl":null,"url":null,"abstract":"<p><p>Bananas (Musa ssp.) are globally important staple crops increasingly constrained by biotic stressors, climatic instability, and the high labor demands of cultivation. The genetic improvement of dwarf phenotypes offers a strategic pathway to enhance mechanization and reduce production costs. In this study, we have carried out whole-genome resequencing of 300 Musa accessions to analyze genome-wide allelic diversity and identify loci associated with shoot architecture. Our analysis uncovered extensive genetic variation within the A subgenome, pivotal for environmental adaptability, and detected introgression from Musa itinerans (subgroup A) into cultivated varieties (subgroup F), suggesting a broadened genetic base amenable to breeding. A genome-wide association study (GWAS) pinpointed MabHLH30 as a crucial gene associated plant stature. Functional validation confirmed MabHLH30 as a critical regulator of plant stature and leaf morphology. Leveraging this finding, we developed molecular markers for MabHLH30, enabling marker-assisted selection (MAS) to accelerate the breeding of compact, high-yielding cultivars. Collectively, these results provide a genomic framework for the targeted improvement of banana architecture and represent a valuable resource for cultivar development under diverse agroecological conditions.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.70002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bananas (Musa ssp.) are globally important staple crops increasingly constrained by biotic stressors, climatic instability, and the high labor demands of cultivation. The genetic improvement of dwarf phenotypes offers a strategic pathway to enhance mechanization and reduce production costs. In this study, we have carried out whole-genome resequencing of 300 Musa accessions to analyze genome-wide allelic diversity and identify loci associated with shoot architecture. Our analysis uncovered extensive genetic variation within the A subgenome, pivotal for environmental adaptability, and detected introgression from Musa itinerans (subgroup A) into cultivated varieties (subgroup F), suggesting a broadened genetic base amenable to breeding. A genome-wide association study (GWAS) pinpointed MabHLH30 as a crucial gene associated plant stature. Functional validation confirmed MabHLH30 as a critical regulator of plant stature and leaf morphology. Leveraging this finding, we developed molecular markers for MabHLH30, enabling marker-assisted selection (MAS) to accelerate the breeding of compact, high-yielding cultivars. Collectively, these results provide a genomic framework for the targeted improvement of banana architecture and represent a valuable resource for cultivar development under diverse agroecological conditions.

全基因组关联研究揭示了香蕉矮化性状的遗传多样性和调控位点。
香蕉(Musa ssp.)是全球重要的主要作物,日益受到生物压力、气候不稳定和种植高劳动力需求的限制。矮秆表型的遗传改良为提高机械化和降低生产成本提供了一条战略途径。在这项研究中,我们对300份Musa材料进行了全基因组重测序,分析了全基因组等位基因多样性,并确定了与茎部结构相关的位点。我们的分析揭示了A亚基因组中广泛的遗传变异,这对环境适应性至关重要,并检测到从A亚群的Musa itinerans向栽培品种(F亚群)的渗入,表明遗传基础拓宽,适合育种。一项全基因组关联研究(GWAS)确定MabHLH30是与植物身高相关的关键基因。功能验证证实MabHLH30是植物高度和叶片形态的关键调节因子。利用这一发现,我们开发了MabHLH30的分子标记,使标记辅助选择(MAS)能够加速紧凑高产品种的育种。总之,这些结果为香蕉结构的定向改良提供了基因组框架,并为不同农业生态条件下的品种开发提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信