Ajayraj Kushwaha, Samiksha Singh, Bing Song Zheng, Durgesh Kumar Tripathi, Ravi Gupta, Vijay Pratap Singh
{"title":"MpRR-MYB2 and MpRR-MYB5: New players of chloroplast biogenesis.","authors":"Ajayraj Kushwaha, Samiksha Singh, Bing Song Zheng, Durgesh Kumar Tripathi, Ravi Gupta, Vijay Pratap Singh","doi":"10.1111/jipb.13868","DOIUrl":"https://doi.org/10.1111/jipb.13868","url":null,"abstract":"<p><p>Photosynthesis is an essential biological process that occurs within chloroplasts. Recently, Frangedakis et al. (2024) reported that transcription factors- MpRR-MYB2 and MpRR-MYB5 work along with GLK, and also play a role in chloroplast development. The findings from this research could pave the way for engineering crops with enhanced photosynthetic efficiency.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143490307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Fahad, Leeza Tariq, Wanchang Li, Liang Wu
{"title":"MicroRNA gatekeepers: Orchestrating rhizospheric dynamics.","authors":"Muhammad Fahad, Leeza Tariq, Wanchang Li, Liang Wu","doi":"10.1111/jipb.13860","DOIUrl":"https://doi.org/10.1111/jipb.13860","url":null,"abstract":"<p><p>The rhizosphere plays a crucial role in plant growth and resilience to biotic and abiotic stresses, highlighting the complex communication between plants and their dynamic rhizosphere environment. Plants produce a wide range of signaling molecules that facilitate communication with various rhizosphere factors, yet our understanding of these mechanisms remains elusive. In addition to protein-coding genes, increasing evidence underscores the critical role of microRNAs (miRNAs), a class of non-coding single-stranded RNA molecules, in regulating plant growth, development, and responses to rhizosphere stresses under diverse biotic and abiotic factors. In this review, we explore the crosstalk between miRNAs and their target mRNAs, which influence the development of key plant structures shaped by the belowground environment. Moving forward, more focused studies are needed to clarify the functions and expression patterns of miRNAs, to uncover the common regulatory mechanisms that mediate plant tolerance to rhizosphere dynamics. Beyond that, we propose that using artificial miRNAs and manipulating the expression of miRNAs and their targets through overexpression or knockout/knockdown approaches could effectively investigate their roles in plant responses to rhizosphere stresses, offering significant potential for advancing crop engineering.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant-microbiome interactions and their impacts on plant adaptation to climate change.","authors":"Qing Zeng, Hang-Wei Hu, An-Hui Ge, Chao Xiong, Chang-Chun Zhai, Gui-Lan Duan, Li-Li Han, Si-Yun Huang, Li-Mei Zhang","doi":"10.1111/jipb.13863","DOIUrl":"https://doi.org/10.1111/jipb.13863","url":null,"abstract":"<p><p>Plants have co-evolved with a wide range of microbial communities over hundreds of millions of years, this has drastically influenced their adaptation to biotic and abiotic stress. The rapid development of multi-omics approaches has greatly improved our understanding of the diversity, composition, and functions of plant microbiomes, but how global climate change affects the assembly of plant microbiomes and their roles in regulating host plant adaptation to changing environmental conditions is not fully known. In this review, we summarize recent advancements in the community assembly of plant microbiomes, and their responses to climate change factors such as elevated CO<sub>2</sub> levels, warming, and drought. We further delineate the research trends and hotspots in plant-microbiome interactions in the context of climate change, and summarize the key mechanisms by which plant microbiomes influence plant adaptation to the changing climate. We propose that future research is urgently needed to unravel the impact of key plant genes and signal molecules modulated by climate change on microbial communities, to elucidate the evolutionary response of plant-microbe interactions at the community level, and to engineer synthetic microbial communities to mitigate the effects of climate change on plant fitness.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evidence for evolution of a new sex chromosome within the haploid-dominant Marchantiales plant lineage.","authors":"Yuan Fu, Xiaoxia Zhang, Tian Zhang, Wenjing Sun, Wenjun Yang, Yajing Shi, Jian Zhang, Qiang He, Deborah Charlesworth, Yuannian Jiao, Zhiduan Chen, Bo Xu","doi":"10.1111/jipb.13867","DOIUrl":"https://doi.org/10.1111/jipb.13867","url":null,"abstract":"<p><p>Sex chromosomes have evolved independently in numerous lineages across the Tree of Life, in both diploid-dominant species, including many animals and plants, and the less studied haploid-dominant plants and algae. Strict genetic sex determination ensures that individuals reproduce by outcrossing. However, species with separate sexes (termed dioecy in diploid plants, and dioicy in haploid plants) may sometimes evolve different sex systems, and become monoicous, with the ability to self-fertilize. Here, we studied dioicy-monoicy transitions in the ancient liverwort haploid-dominant plant lineage, using three telomere-to-telomere gapless chromosome-scale reference genome assemblies from the Ricciaceae group of Marchantiales. Ancestral liverworts are believed to have been dioicous, with U and V chromosomes (chromosome 9) determining femaleness and maleness, respectively. We confirm the finding that monoicy in Ricciocarpos natans evolved from a dioicous ancestor, and most ancestrally U chromosomal genes have been retained on autosomes in this species. We also describe evidence suggesting the possible re-evolution of dioicy in the genus Riccia, with probable de novo establishment of a sex chromosome from an autosome (chromosome 5), and further translocations of genes from the new sex chromosome to autosomes. Our results also indicated that micro-chromosomes are consistent genomic features, and may have evolved independently from sex chromosomes in Ricciocarpos and Riccia lineages.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Somatic variations in the meiosis-specific gene CrMER3 confer seedlessness in a citrus bud sport.","authors":"Yan-Jie Fan, Ze-Zhen Du, Xing-Yi He, Zi-Ang Liu, Ji-Xin Zhuang, Gong-Ao Xiao, Yao-Yuan Duan, Feng-Quan Tan, Kai-Dong Xie, Wen-Biao Jiao, Fei Zhang, Chao Yang, Wen-Wu Guo, Xiao-Meng Wu","doi":"10.1111/jipb.13872","DOIUrl":"https://doi.org/10.1111/jipb.13872","url":null,"abstract":"<p><p>Seedlessness is a most valuable trait in fruit crops for fresh consumption and processing. The mutations in essential meiosis genes are known to confer sterility and seed abortion in plants. However, defects in meiosis have rarely been reported in fruit crops. Here, we found meiosis defects caused sterility in a seedless citrus bud sport cultivar, with massive unpaired univalents during diakinesis, indicating a disruption in crossover formation. A non-functional CrMER3A<sup>-103 bp</sup> allele with a 103-bp deletion in the gene body, together with the other non-functional CrMER3a allele with a T deletion in exon, were identified in the seedless cultivar. The CrMER3 protein was undetectable at meiotic prophase I in the seedless cultivar, and knock out of CrMER3 resulted in sterility in precocious Mini-citrus. Therefore, the natural variation in CrMER3 is responsible for sterility and seedlessness in this bud sport cultivar. The CrMER3a allele originated from the primitive wild mandarin and was passed to cultivated mandarins. A Kompetitive Allele-Specific PCR (KASP) marker was developed to identify citrus germplasm with CrMER3a allele and to screen potential sterile and seedless hybrids in citrus cross breeding. Uncovering the natural mutations responsible for meiosis defects in citrus enhances our understanding of mechanisms controlling seedlessness in fruit crops and facilitates breeding of seedless varieties.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue Jiang, Yingshuai Yang, Yong Li, Yongzhi Wang, Bernardo Rodamilans, Weiqin Ji, Xiaoxia Wu, Juan Antonio García, Xiaoyun Wu, Xiaofei Cheng
{"title":"Plant viruses convergently target NPR1 with various strategies to suppress salicylic acid-mediated antiviral immunity.","authors":"Xue Jiang, Yingshuai Yang, Yong Li, Yongzhi Wang, Bernardo Rodamilans, Weiqin Ji, Xiaoxia Wu, Juan Antonio García, Xiaoyun Wu, Xiaofei Cheng","doi":"10.1111/jipb.13866","DOIUrl":"https://doi.org/10.1111/jipb.13866","url":null,"abstract":"<p><p>NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1), the receptor for salicylic acid (SA), plays a central role in the SA-mediated basal antiviral responses. Recent studies have shown that two different plant RNA viruses encode proteins that suppress such antiviral responses by inhibiting its SUMOylation and inducing its degradation, respectively. However, it is unclear whether targeting NPR1 is a general phenomenon in viruses and whether viruses have novel strategies to inhibit NPR1. In the present study, we report that two different positive-sense single-stranded RNA (+ssRNA) viruses, namely, alfalfa mosaic virus (AMV) and potato virus X (PVX); one negative-sense single-stranded RNA (-ssRNA) virus (calla lily chlorotic spot virus, CCSV); and one single-stranded DNA virus (beet severe curly-top virus, BSCTV) that also encode one or more proteins that interact with NPR1. In addition, we found that the AMV-encoded coat protein (CP) can induce NPR1 degradation by recruiting S-phase kinase-associated protein 1 (Skp1), a key component of the Skp1/cullin1/F-box (SCF) E3 ligase. In contrast, the BSCTV-encoded V2 protein inhibits NPR1 function, probably by affecting its nucleocytoplasmic distribution via the nuclear export factor ALY. Taken together, these data suggest that NPR1 is one of the central hubs in the molecular arms race between plants and viruses and that different viruses have independently evolved different strategies to target NPR1 and disrupt its function.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuyan An, Jingwei Lu, Shuangxi Zhang, Beibei Fang, Meixiang Zhang
{"title":"New insights into CNL-mediated immunity through recognition of Ralstonia solanacearum RipP1 by NbZAR1.","authors":"Yuyan An, Jingwei Lu, Shuangxi Zhang, Beibei Fang, Meixiang Zhang","doi":"10.1111/jipb.13855","DOIUrl":"https://doi.org/10.1111/jipb.13855","url":null,"abstract":"<p><p>Nicotiana benthamiana requires the coiled-coil nucleotide-binding leucine-rich repeat receptor protein NbZAR1 to recognize the type III effector RipP1 from Ralstonia solanacearum. Moreover, RipP1-induced cell death and immunity relies on EDS1 and NRG1, two core components of the Toll-interleukin 1-like receptor nucleotide-binding leucine-rich repeat receptor signaling pathway.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Accurate genomic prediction for grain yield and grain moisture content of maize hybrids using multi-environment data.","authors":"Jingxin Wang, Liwei Liu, Kunhui He, Takele Weldu Gebrewahid, Shang Gao, Qingzhen Tian, Zhanyi Li, Yiqun Song, Yiliang Guo, Yanwei Li, Qinxin Cui, Luyan Zhang, Jiankang Wang, Changling Huang, Liang Li, Tingting Guo, Huihui Li","doi":"10.1111/jipb.13857","DOIUrl":"https://doi.org/10.1111/jipb.13857","url":null,"abstract":"<p><p>Incorporating genotype-by-environment (GE) interaction effects into genomic prediction (GP) models with multi-environment climate data can improve selection accuracy to accelerate crop breeding but has received little research attention. Here, we conducted a cross-region GP study of grain moisture content (GMC) and grain yield (GY) in maize hybrids in two major Chinese growing regions using data for 19 climatic factors across 34 environments in 2020 and 2021. Predictions were conducted in 2,126 hybrids generated from 475 maize inbred lines, using 9,355 single nucleotide polymorphism markers for genotyping. Models based on genomic best linear unbiased prediction (GBLUP) incorporating GE interaction effects of 19 climatic factors associated with day length, transpiration, temperature, and radiation (GBLUP-GE<sub>19CF</sub>) trained on whole data set outperformed the traditional GBLUP or BayesB models in predicting GMC or GY by 10-fold cross-validation, achieving prediction accuracies of 0.731 and 0.331, respectively. To refine the climate data, we examined 84 statistical features associated with these climatic factors and identified nine factors most correlated with GMC or GY. Principal component analysis of climate data yielded nine principal components responsible for 97% of the variability in the data. Incorporating these nine factors or principal components into the GBLUP-GE framework with a similarity matrix of environments (GBLUP-GE<sub>9CF</sub> and GBLUP-GE<sub>PCA</sub>) provided similar prediction accuracies but could reduce the computational burden. In addition, increasing the number of test set environments in the training set from 8 to 14 increased the prediction accuracy of GBLUP-GE<sub>19CF</sub> trained with monthly average climate data for 2020-2021. Examining prediction accuracy based on concordance, the proportion of overlapping hybrids between the top 50% of predicted and observed values for GMC and GY, indicated that concordance exceeded 50% for the GBLUP-GE<sub>19CF</sub> model, confirming the reliability of our predictions. This study can provide practical guidance for optimizing GPs for maize breeding programs in multi-environment selection.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaobo Wei, Long Cheng, Hongge Qian, Xia Li, Lianguang Shang, Yujie Zhou, Xiangyuan Ye, Yupeng Zhou, Yuan Gao, Lin Cheng, Chen Xie, Qingwen Yang, Qian Qian, Wenbin Zhou
{"title":"Florigen-like protein OsFTL1 promotes flowering without essential florigens Hd3a and RFT1 in rice.","authors":"Shaobo Wei, Long Cheng, Hongge Qian, Xia Li, Lianguang Shang, Yujie Zhou, Xiangyuan Ye, Yupeng Zhou, Yuan Gao, Lin Cheng, Chen Xie, Qingwen Yang, Qian Qian, Wenbin Zhou","doi":"10.1111/jipb.13856","DOIUrl":"https://doi.org/10.1111/jipb.13856","url":null,"abstract":"<p><p>Flowering time is a critical agronomic trait in rice, directly influencing grain yield and adaptability to specific planting regions and seasons. Florigens, including FLOWERING LOCUS T (FT) proteins Hd3a (OsFTL2) and RFT1 (OsFTL3), play central roles in transmitting flowering signals through rice's photoperiod regulatory network. While Hd3a and RFT1 have been extensively studied, the functions and interactions of other FT-like proteins remain unclear, limiting advancements in breeding strategies for early-maturing rice varieties. Here, we demonstrate that the florigen-like protein OsFTL1 forms a florigen activation complex (FAC) and promotes flowering under both short-day and long-day conditions. OsFTL1 localizes to the nucleus and cytoplasm, with predominant expression in the shoot base, facilitating its mobilization to the shoot apical meristem (SAM) to initiate flowering. Overexpression of OsFTL1 (OsFTL1-OE) in leaves or shoot bases significantly accelerates flowering and alters plant architecture. In the nucleus, OsFTL1 interacts with GF14c and OsFD1 to form an FAC, activating OsMADS14 and OsMADS15 expression to drive flowering. Markedly, OsFTL1-OE plants deficient in Hd3a and RFT1 exhibited earlier flowering compared with wild-type plants, indicating that OsFTL1 can independently promote flowering. Furthermore, haplotype analysis identified OsFTL1-Hap3, a beneficial variant associated with early flowering and comparable grain yields. These findings revealed that OsFTL1 can substitute for Hd3a and RFT1 in FAC formation, promoting flowering across photoperiods, and highlighting its potential application in breeding early-maturing, high-yield rice varieties suitable for diverse environments.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}