Journal of Integrative Plant Biology最新文献

筛选
英文 中文
CircZmMED16 delays plant flowering by negatively regulating starch content through its binding to ZmAPS1. CircZmMED16通过与ZmAPS1的结合负向调节淀粉含量,从而延迟植物开花。
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-01-21 DOI: 10.1111/jipb.13824
Xin Tang, Xiaoju Feng, Yang Xu, Bo Yang, Yi Wang, Yang Zhou, Qi Wang, Yan Mao, Wubing Xie, Tianhong Liu, Qi Tang, Yaxi Liu, Yao Wang, Jie Xu, Yanli Lu
{"title":"CircZmMED16 delays plant flowering by negatively regulating starch content through its binding to ZmAPS1.","authors":"Xin Tang, Xiaoju Feng, Yang Xu, Bo Yang, Yi Wang, Yang Zhou, Qi Wang, Yan Mao, Wubing Xie, Tianhong Liu, Qi Tang, Yaxi Liu, Yao Wang, Jie Xu, Yanli Lu","doi":"10.1111/jipb.13824","DOIUrl":"https://doi.org/10.1111/jipb.13824","url":null,"abstract":"<p><p>Circular RNAs (circRNAs), a type of head-to-tail closed RNA molecules, have been implicated in various aspects of plant development and stress responses through transcriptome sequencing; however, the precise functional roles of circRNAs in plants remain poorly understood. In this study, we identified a highly expressed circular RNA, circZmMED16, derived from exon 8 of the mediator complex subunit 16 (ZmMED16) across different maize (Zea mays L.) inbred lines using circRNA-seq analysis. This circRNA is predominantly expressed in maize tassels and functions in the cytoplasm. Overexpression of circZmMED16 resulted in increased expression of ZmMED16/AtMED16 and delayed flowering in both maize and Arabidopsis thaliana, compared with that in wild-type plants. In contrast, overexpression of the parent gene ZmMED16 did not alter the flowering time of transgenic plants in Arabidopsis, suggesting that circZmMED16 plays a specific role in regulating flowering, distinct from that of linear ZmMED16. To further understand the mechanisms underlying the regulation of flowering time by circZmMED16, we performed RNA pull-down, dual-luciferase, RNA interference (RNAi), and ribonuclease protection assays (RPA). These results indicate that circZmMED16 interacts with small subunit 1 of ADP-glucose pyrophosphorylase (APS1) mRNA in both maize and Arabidopsis. The knockdown of circZmMED16 increased the expression of ZmAPS1, whereas the overexpression of circZmMED16 led to the downregulation of ZmAPS1 RNA and protein. By affecting ZmAPS1 expression, circZmMED16 reduced ADP-glucose pyrophosphorylase (AGPase) activity and led to delayed flowering. These results revealed a novel regulatory mechanism for circRNAs in flowering time and shed light on their functional and regulatory roles in plants.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A synthetic biology approach for identifying de-SUMOylation enzymes of substrates. 鉴定底物去苏酰化酶的合成生物学方法。
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-01-21 DOI: 10.1111/jipb.13838
Junwen Huang, Junjie Huang, Jiayuan Wu, Mi Zhou, Siyi Luo, Jieming Jiang, Tongsheng Chen, Ling Shao, Jianbin Lai, Chengwei Yang
{"title":"A synthetic biology approach for identifying de-SUMOylation enzymes of substrates.","authors":"Junwen Huang, Junjie Huang, Jiayuan Wu, Mi Zhou, Siyi Luo, Jieming Jiang, Tongsheng Chen, Ling Shao, Jianbin Lai, Chengwei Yang","doi":"10.1111/jipb.13838","DOIUrl":"https://doi.org/10.1111/jipb.13838","url":null,"abstract":"<p><p>A synthetic biology approach using a robust reconstitution system in Escherichia coli enables the identification of plant ubiquitin-like proteases responsible for removing the small ubiquitin-like modifier (SUMO) post-translational modifications from specific protein substrates.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ALBA3 maintains male fertility under heat stress in plants. ALBA3维持植物在热胁迫下的雄性生殖力。
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-01-17 DOI: 10.1111/jipb.13846
Dong Ci, Yi Liu, Lishuan Wang, Ruixian Zhu, Yong Chen, Ge Bai, Ziyan Xu, Huanbin Zhou, Xueping Zhou, Liu-Min Fan, Weiqiang Qian
{"title":"ALBA3 maintains male fertility under heat stress in plants.","authors":"Dong Ci, Yi Liu, Lishuan Wang, Ruixian Zhu, Yong Chen, Ge Bai, Ziyan Xu, Huanbin Zhou, Xueping Zhou, Liu-Min Fan, Weiqiang Qian","doi":"10.1111/jipb.13846","DOIUrl":"https://doi.org/10.1111/jipb.13846","url":null,"abstract":"<p><p>Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis. ALBA3 is highly expressed in pollen, and ALBA3 is localized in the cytoplasm of both sperm and vegetative cells. Mutants lacking functional ALBA3 exhibit hypersensitivity to HS, with reduced silique length and fertility due to defects in pollen germination, pollination, pollen tube growth, and fertilization under HS. ALBA3 binds and stabilizes a subset of messenger RNAs (mRNAs) essential for pollen function, thereby protecting male fertility. Two residues in the Alba domain, K46 and L90, are critical for ALBA3's ability to bind and stabilize mRNAs and are necessary for its proper function. Interestingly, the loss of rice ALBA3 also leads to severe pollen abortion and male sterility under HS, highlighting the conserved role of ALBA3 in protecting male fertility across plant species. This study uncovers a conserved mechanism by which ALBA3 safeguards male fertility during HS by stabilizing specific mRNAs crucial for pollen function.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The comprehensive regulatory network in seed oil biosynthesis. 种子油生物合成的综合调控网络。
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-01-17 DOI: 10.1111/jipb.13834
Wei Wei, Long-Fei Wang, Jian-Jun Tao, Wan-Ke Zhang, Shou-Yi Chen, Qingxin Song, Jin-Song Zhang
{"title":"The comprehensive regulatory network in seed oil biosynthesis.","authors":"Wei Wei, Long-Fei Wang, Jian-Jun Tao, Wan-Ke Zhang, Shou-Yi Chen, Qingxin Song, Jin-Song Zhang","doi":"10.1111/jipb.13834","DOIUrl":"https://doi.org/10.1111/jipb.13834","url":null,"abstract":"<p><p>Plant oils play a crucial role in human nutrition, industrial applications and biofuel production. While the enzymes involved in fatty acid (FA) biosynthesis are well-studied, the regulatory networks governing these processes remain largely unexplored. This review explores the intricate regulatory networks modulating seed oil biosynthesis, focusing on key pathways and factors. Seed oil content is determined by the efficiency of de novo FA synthesis as well as influenced by sugar transport, lipid metabolism, FA synthesis inhibitors and fine-tuning mechanisms. At the center of this regulatory network is WRINKLED1 (WRI1), which plays a conserved role in promoting seed oil content across various plant species. WRI1 interacts with multiple proteins, and its expression level is regulated by upstream regulators, including members of the LAFL network. Beyond the LAFL network, we also discuss a potential nuclear factor-Y (NF-Y) regulatory network in soybean with an emphasis on NF-YA and NF-YB and their associated proteins. This NF-Y network represents a promising avenue for future efforts aimed at enhancing oil accumulation and improving stress tolerance in soybean. Additionally, the application of omics-based approaches is of great significance. Advances in omics technologies have greatly facilitated the identification of gene resources, opening new opportunities for genetic improvement. Importantly, several transcription factors involved in oil biosynthesis also participate in stress responses, highlighting a potential link between the two processes. This comprehensive review elucidates the complex mechanisms underlying the regulation of oil biosynthesis, offering insights into potential biotechnological strategies for improving oil production and stress tolerance in oil crops.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the role of microRNAs in nonhost resistance to Sclerotinia sclerotiorum: Rice-specific microRNAs attack the pathogen via cross-kingdom RNAi. 揭示microRNAs在非宿主对菌核菌抗性中的作用:水稻特异性microRNAs通过跨界RNAi攻击病原体。
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-01-16 DOI: 10.1111/jipb.13840
Jiaqin Mei, Shuxian Yang, Yanxia Linghu, Yang Gao, Yuxin Hu, Wenjing Nie, Yujie Zhang, Lixuan Peng, Yongzhi Wu, Yijuan Ding, Ruirui Luo, Jingyan Liao, Wei Qian
{"title":"Unveiling the role of microRNAs in nonhost resistance to Sclerotinia sclerotiorum: Rice-specific microRNAs attack the pathogen via cross-kingdom RNAi.","authors":"Jiaqin Mei, Shuxian Yang, Yanxia Linghu, Yang Gao, Yuxin Hu, Wenjing Nie, Yujie Zhang, Lixuan Peng, Yongzhi Wu, Yijuan Ding, Ruirui Luo, Jingyan Liao, Wei Qian","doi":"10.1111/jipb.13840","DOIUrl":"https://doi.org/10.1111/jipb.13840","url":null,"abstract":"<p><p>The development of rapeseed with high resistance against the pathogen Sclerotinia sclerotiorum is impeded by the lack of effective resistance resources within host species. Unraveling the molecular basis of nonhost resistance (NHR) holds substantial value for resistance improvement in crops. In the present study, small RNA sequencing and transcriptome sequencing were carried out between rice (a nonhost species of S. sclerotiorum) and rapeseed during infection, revealing the involvement of rice miRNAs on translation-related processes in both rice and the pathogen. Specifically, rice-specific miRNAs with potential capability for cross-kingdom RNAi against S. sclerotiorum were explored, of which Os-miR169y was selected as a representative case to elucidate its role in resistance to S. sclerotiorum. The silence of Os-miR169y decreased the resistance level of rice to S. sclerotiorum, and heterologous expression of Os-miR169y in Arabidopsis and rapeseed significantly enhanced the host resistance. The dual-luciferase reporter assay indicates that Os-miR169y targets S. sclerotiorum 60S ribosomal protein L19 (SsRPL19). Overexpressing Os-miR169y (OE<sub>ss</sub>-miR169y) and RNAi of SsRPL19 (RNAi<sub>ss</sub>-RPL19) in S. sclerotiorum significantly impaired the growth and pathogenicity of the pathogen, while overexpressing SsRPL19 exhibited a contrast effect. Yeast-two-hybridization revealed an interlinking role of SsRPL19 with multiple large and small ribosomal subunits, indicating its important role in translation. Proteome sequencing detected a decreased amount of proteins in transformants OE<sub>ss</sub>-miR169y and RNAi<sub>ss</sub>-RPL19 and significant suppression on key metabolic pathways such as carbon and nitrogen metabolisms. Collectively, this study suggests that rice can secrete specific miRNAs to suppress genes essential for S. sclerotiorum, such as Os-miR169y, which targets and suppresses SsRPL19 and thus impairs protein synthesis in the pathogen. This study sheds light on the intrinsic mechanisms of rice NHR against S. sclerotiorum, and further demonstrates the potential of using nonhost-specific \"pathogen-attacking\" miRNAs in improving resistance in host species.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WRKY transcription factors: Hubs for regulating plant growth and stress responses. WRKY转录因子:调控植物生长和胁迫反应的枢纽。
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-01-15 DOI: 10.1111/jipb.13828
Lu Yang, Siyu Fang, Lei Liu, Lirong Zhao, Wanqin Chen, Xia Li, Zhiyu Xu, Shidie Chen, Houping Wang, Diqiu Yu
{"title":"WRKY transcription factors: Hubs for regulating plant growth and stress responses.","authors":"Lu Yang, Siyu Fang, Lei Liu, Lirong Zhao, Wanqin Chen, Xia Li, Zhiyu Xu, Shidie Chen, Houping Wang, Diqiu Yu","doi":"10.1111/jipb.13828","DOIUrl":"https://doi.org/10.1111/jipb.13828","url":null,"abstract":"<p><p>As sessile organisms, plants must directly face various stressors. Therefore, plants have evolved a powerful stress resistance system and can adjust their growth and development strategies appropriately in different stressful environments to adapt to complex and ever-changing conditions. Nevertheless, prioritizing defensive responses can hinder growth; this is a crucial factor for plant survival but is detrimental to crop production. As such, comprehending the impact of adverse environments on plant growth is not only a fundamental scientific inquiry but also imperative for the agricultural industry and for food security. The traditional view that plant growth is hindered during defense due to resource allocation trade-offs is challenged by evidence that plants exhibit both robust growth and defensive capabilities through human intervention. These findings suggest that the growth‒defense trade-off is not only dictated by resource limitations but also influenced by intricate transcriptional regulatory mechanisms. Hence, it is imperative to conduct thorough investigations on the central genes that govern plant resistance and growth in unfavorable environments. Recent studies have consistently highlighted the importance of WRKY transcription factors in orchestrating stress responses and plant-specific growth and development, underscoring the pivotal role of WRKYs in modulating plant growth under stressful conditions. Here, we review recent advances in understanding the dual roles of WRKYs in the regulation of plant stress resistance and growth across diverse stress environments. This information will be crucial for elucidating the intricate interplay between plant stress response and growth and may aid in identifying gene loci that could be utilized in future breeding programs to develop crops with enhanced stress resistance and productivity.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating the landscape of plant proteomics. 导航植物蛋白质组学的景观。
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-01-15 DOI: 10.1111/jipb.13841
Tian Sang, Zhen Zhang, Guting Liu, Pengcheng Wang
{"title":"Navigating the landscape of plant proteomics.","authors":"Tian Sang, Zhen Zhang, Guting Liu, Pengcheng Wang","doi":"10.1111/jipb.13841","DOIUrl":"https://doi.org/10.1111/jipb.13841","url":null,"abstract":"<p><p>In plants, proteins are fundamental to virtually all biological processes, such as photosynthesis, signal transduction, metabolic regulation, and stress responses. Studying protein distribution, function, modifications, and interactions at the cellular and tissue levels is critical for unraveling the complexities of these biological pathways. Protein abundance and localization are highly dynamic and vary widely across the proteome, presenting a challenge for global protein quantification and analysis. Mass spectrometry-based proteomics approaches have proven to be powerful tools for addressing this complex issue. In this review, we summarize recent advancements in proteomics research and their applications in plant biology, with an emphasis on the current state and challenges of studying post-translational modifications, single-cell proteomics, and protein-protein interactions. Additionally, we discuss future prospects for plant proteomics, highlighting potential opportunities that proteomics technologies offer in advancing plant biology research.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular and biochemical evolution of casbene-type diterpene and sesquiterpene biosynthesis in rice. 水稻casbene型二萜和倍半萜生物合成的分子和生化进化。
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-01-10 DOI: 10.1111/jipb.13836
Shen Zhou, Chuansong Zhan, Jinjin Zhu, Chenkun Yang, Qiaoqiao Zhao, Yangyang Sun, Junjie Zhou, Shuangqian Shen, Jie Luo
{"title":"Molecular and biochemical evolution of casbene-type diterpene and sesquiterpene biosynthesis in rice.","authors":"Shen Zhou, Chuansong Zhan, Jinjin Zhu, Chenkun Yang, Qiaoqiao Zhao, Yangyang Sun, Junjie Zhou, Shuangqian Shen, Jie Luo","doi":"10.1111/jipb.13836","DOIUrl":"https://doi.org/10.1111/jipb.13836","url":null,"abstract":"<p><p>Casbene and neocembrene are casbene-type macrocyclic diterpenes; their derivatives play significant roles in plant defense and have pharmaceutical applications. We had previously characterized a casbene synthase, TERPENE SYNTHASE 28 (OsTPS28), in rice (Oryza sativa). However, the mechanism of neocembrene biosynthesis in rice remained unclear. In this study, we identified two genes of the TPS-a1 subfamily, OsTPS2 and OsTPS10, encoding a neocembrene synthase and sesquiterpene synthase, respectively, as supported by enzyme activity assays and determination of subcellular localization. Metabolic profiling of rice lines overexpressing either TPS confirmed the catalytic functions of OsTPS2 and OsTPS10, and suggested that OsTPS10 enhances resistance to rice bacterial blight. An evolutionary analysis revealed that OsTPS10 is conserved in monocots and first appeared in wild rice, whereas OsTPS2 and OsTPS28 sequentially evolved through gene duplication, transit peptide recruitment, and mutation of key amino acids such as H362R. In summary, this study not only deepens our understanding of the metabolic pathways and evolutionary history governing the biosynthesis of casbene-type diterpenoids in rice, representing parallel and divergent evolution within the gene family, and offers gene resources for the improvement of rice.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interaction of nutrient uptake with biotic and abiotic stresses in plantsFA. 植物营养吸收与生物和非生物胁迫的相互作用。
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-01-09 DOI: 10.1111/jipb.13827
Lingyan Wang, Chuanfeng Ju, Chao Han, Zhenghao Yu, Ming-Yi Bai, Cun Wang
{"title":"The interaction of nutrient uptake with biotic and abiotic stresses in plants<sup>FA</sup>.","authors":"Lingyan Wang, Chuanfeng Ju, Chao Han, Zhenghao Yu, Ming-Yi Bai, Cun Wang","doi":"10.1111/jipb.13827","DOIUrl":"https://doi.org/10.1111/jipb.13827","url":null,"abstract":"<p><p>Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency. Understanding how plants maintain nutrient uptake and use efficiency under biotic and abiotic stress conditions is crucial for improving crop resilience and sustainability. This review explores the recent advancements in elucidating the mechanisms underlying nutrient uptake and utilization efficiency in plants under such stress conditions. Our aim is to offer a comprehensive perspective that can guide the breeding of stress-tolerant and nutrition-efficient crop varieties, ultimately contributing to the advancement of sustainable agriculture.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cysteine modifications as molecular switch governing salicylic acid biosynthesis in systemic acquired resistance. 半胱氨酸修饰作为控制系统性获得性耐药中水杨酸生物合成的分子开关。
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-01-09 DOI: 10.1111/jipb.13833
Ravi Gupta
{"title":"Cysteine modifications as molecular switch governing salicylic acid biosynthesis in systemic acquired resistance.","authors":"Ravi Gupta","doi":"10.1111/jipb.13833","DOIUrl":"https://doi.org/10.1111/jipb.13833","url":null,"abstract":"<p><p>This commentary discusses the recent identification of hydrogen peroxide as systemic acquired resistance-inducing signal and its dose-dependent effect on salicylic acid biosynthesis in the systemic tissues in response to a pathogen attack.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信