Journal of Integrative Plant Biology最新文献

筛选
英文 中文
A SlMYB78-regulated bifunctional gene cluster for phenolamide and salicylic acid biosynthesis during tomato domestication, reducing disease resistance.
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-03-28 DOI: 10.1111/jipb.13899
Peng Cao, Linghao Xia, Xianggui Li, Meng Deng, Zhonghui Zhang, Xiangyu Lin, Zeyong Wu, Yingchen Hao, Penghui Liu, Chao Wang, Chun Li, Jie Yang, Jun Lai, Jun Yang, Shouchuang Wang
{"title":"A SlMYB78-regulated bifunctional gene cluster for phenolamide and salicylic acid biosynthesis during tomato domestication, reducing disease resistance.","authors":"Peng Cao, Linghao Xia, Xianggui Li, Meng Deng, Zhonghui Zhang, Xiangyu Lin, Zeyong Wu, Yingchen Hao, Penghui Liu, Chao Wang, Chun Li, Jie Yang, Jun Lai, Jun Yang, Shouchuang Wang","doi":"10.1111/jipb.13899","DOIUrl":"https://doi.org/10.1111/jipb.13899","url":null,"abstract":"<p><p>Plants have evolved a sophisticated chemical defense network to counteract pathogens, with phenolamides and salicylic acid (SA) playing pivotal roles in the immune response. However, the synergistic regulatory mechanisms of their biosynthesis remain to be explored. Here, we identified a biosynthetic gene cluster on chromosome 2 (BGC2) associated with the biosynthesis of phenolamide and SA, wherein the key component SlEPS1 exhibits dual catalytic functions for the synthesis of phenolamides and SA. Overexpression of the key component SlEPS1 of BGC2 in tomato enhanced resistance to the bacterial pathogen Pst DC3000, whereas knockout plants were more susceptible. Exogenous applications of SA and phenolamides revealed that these two compounds act synergistically to enhance plant resistance. Notably, during tomato domestication, a disease-resistant allele of SlEPS1, SlEPS1<sup>HapB</sup>, was subject to negative selection, leading to a reduction in phenolamide and SA levels and compromised disease resistance in modern varieties. Moreover, the SlMYB78 directly regulates the BGC2 gene cluster to enhance phenolamide and SA biosynthesis, modulating resistance to Pst DC3000. Our study employed multi-omics approaches to describe the synergistic regulation of phenolamide and SA biosynthesis, offering new insights into the complexity of plant immune-related metabolism.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143727301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VvHY5 and VvBEE1 antagonistically control resveratrol biosynthesis to mitigate high light-induced damage in grapevine.
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-03-28 DOI: 10.1111/jipb.13895
Zain Ali, Yanzhao Sun, Zhaodong Ma, Yanyan Zheng, Yang Liu
{"title":"VvHY5 and VvBEE1 antagonistically control resveratrol biosynthesis to mitigate high light-induced damage in grapevine.","authors":"Zain Ali, Yanzhao Sun, Zhaodong Ma, Yanyan Zheng, Yang Liu","doi":"10.1111/jipb.13895","DOIUrl":"https://doi.org/10.1111/jipb.13895","url":null,"abstract":"<p><p>Excessive exposure to high light can lead to photoinhibition, which impairs photosynthetic efficiency and causes oxidative damage in plants, such as sunburn in grapevines. This study investigates the role of resveratrol (Res), a stilbenoid with antioxidant properties, in protecting plants from high light damage. We found that exposure to high light increased reactive oxygen species (ROS) accumulation and induced photoinhibition in grapevine leaves. In response, Res biosynthesis was upregulated, along with an increase in stilbene synthase (VvSTS) expression. Application of exogenous Res alleviated ROS accumulation and improved photosynthetic efficiency. Further analysis revealed that the VvHY5-VvBEE1 regulatory module plays a pivotal role in regulating VvSTS expression under high light conditions. Specifically, VvHY5 activated VvSTS expression, while VvBEE1 repressed it. Transgenic analysis showed that overexpression of VvHY5 enhanced Res production and photoprotection, whereas overexpression of VvBEE1 reduced Res levels and exacerbated light-induced damage. VvHY5 and VvBEE1 competed for binding to the VvSTS promoter, with brassinosteroids (BRs) modulating their interaction. Our findings reveal the interplay between light signaling and brassinosteroid pathways in regulating Res biosynthesis, providing insights for protecting grapevines from sunburn.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143727315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue information page
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-03-28 DOI: 10.1111/jipb.13688
{"title":"Issue information page","authors":"","doi":"10.1111/jipb.13688","DOIUrl":"https://doi.org/10.1111/jipb.13688","url":null,"abstract":"","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"67 3","pages":"423-424"},"PeriodicalIF":9.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13688","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FaNAC047-FaNAC058 module coordinately promotes chlorophyll degradation and reactive oxygen species production during heat-induced leaf senescence in tall fescue.
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-03-28 DOI: 10.1111/jipb.13897
Liwen Cao, Yao Chen, Kai Xiao, Liang Chen
{"title":"FaNAC047-FaNAC058 module coordinately promotes chlorophyll degradation and reactive oxygen species production during heat-induced leaf senescence in tall fescue.","authors":"Liwen Cao, Yao Chen, Kai Xiao, Liang Chen","doi":"10.1111/jipb.13897","DOIUrl":"https://doi.org/10.1111/jipb.13897","url":null,"abstract":"<p><p>Leaf senescence can be triggered by various abiotic stresses. Among these, heat stress emerges as a pivotal environmental factor, particularly in light of the predicted rise in global temperatures. However, the molecular mechanism underlying heat-induced leaf senescence remains largely unexplored. As a cool-season grass species, tall fescue (Festuca arundinacea) is an ideal and imperative material for investigating heat-induced leaf senescence because heat stress easily triggers leaf senescence to influence its forage yield and turf quality. Here, we investigated the role of FaNAC047 in heat-induced leaf senescence. Overexpression of FaNAC047 promoted heat-induced leaf senescence in transgenic tall fescue that was evidenced by a more seriously destructive photosystem and higher accumulation of reactive oxygen species (ROS), whereas knockdown of FaNAC047 delayed leaf senescence. Further protein-DNA interaction assays indicated that FaNAC047 directly activated the transcriptions of NON-YELLOW COLORING 1 (FaNYC1), NYC1-like (FaNOL), and STAY-GREEN (FaSGR) but directly inhibited Catalases 2 (FaCAT2) expression, thereby promoting chlorophyll degradation and ROS accumulation. Subsequently, protein-protein interaction assays revealed that FaNAC047 physically interacted with FaNAC058 to enhance its regulatory effect on FaNYC1, FaNOL, FaSGR, and FaCAT2. Additionally, FaNAC047 could transcriptionally activate FaNAC058 expression to form a regulatory cascade, driving senescence progression. Consistently, the knockdown of FaNAC058 significantly delayed heat-induced leaf senescence. Collectively, our results reveal that FaNAC047-FaNAC058 module coordinately mediates chlorophyll degradation and ROS production to positively regulate heat-induced leaf senescence. The findings illustrate the molecular network of heat-induced leaf senescence for breeding heat-resistant plants.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143727314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image:
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-03-28 DOI: 10.1111/jipb.13689
{"title":"Cover Image:","authors":"","doi":"10.1111/jipb.13689","DOIUrl":"https://doi.org/10.1111/jipb.13689","url":null,"abstract":"<p>This special issue features invited expert reviews that focus on the latest progress in the fields of plant growth and development, stress resistance, functional omics, and molecular breeding. The cover centers around a vibrant “Tree of Life”, its lush canopy adorned with key research species such as apples, soybeans, tomatoes, tobacco, Arabidopsis, wheat, corn, cotton, rice, and alfalfa. Surrounding the tree are depictions of plant viruses, hormones, and chemical elements, vividly highlighting current research hotspots. Together, they present a magnificent overview of the fl ourishing field of plant biological science.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"67 3","pages":"C1"},"PeriodicalIF":9.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13689","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KatB, a bacterial extracellular vesicles (EVs)-secreted catalase, detoxifies reactive oxygen species (ROS) and promotes pathogen proliferation in plants.
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-03-27 DOI: 10.1111/jipb.13894
Jiliang Deng, Wei Li, Zhangying Wang, Jiayue Zeng, Qiang Cai
{"title":"KatB, a bacterial extracellular vesicles (EVs)-secreted catalase, detoxifies reactive oxygen species (ROS) and promotes pathogen proliferation in plants.","authors":"Jiliang Deng, Wei Li, Zhangying Wang, Jiayue Zeng, Qiang Cai","doi":"10.1111/jipb.13894","DOIUrl":"https://doi.org/10.1111/jipb.13894","url":null,"abstract":"<p><p>Gram-negative bacteria are known to release extracellular vesicles (EVs) into their surrounding environment. However, the biological functions of the proteins contained within these vesicles remain largely unknown. Here, we used tandem mass tag (TMT) proteomic analysis to characterize protein cargoes within EVs of the phytopathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Our investigation revealed that one catalase, KatB, is enriched in bacterial EVs. This enzyme confers EVs with the capacity to detoxify both exogenous and plant-produced H<sub>2</sub>O<sub>2</sub>, thereby contributing to the pathogen's proliferation within the plants. Interestingly, reactive oxygen species (ROS) stress stimulates bacterial EV secretion and enhances the package of KatB into these vesicles. This regulatory process depends on a periplasmic ankyrin-like protein, AnkB. Both AnkB and KatB are encoded within a small operon, and their mutant strains exhibit impaired growth in plant hosts. Furthermore, the treatment of EVs pelleted from bacterial culture supernatants activates the immune responses of plants, and the absence of KatB in EVs further enhances this protective activity. Collectively, our findings indicate that bacteria secreted KatB via EVs to interact with and reduce the host's oxidative environment, thereby promoting their proliferation within plants.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of elite rice with broad-spectrum resistance through pyramiding of key resistance gene and simultaneously editing multiple susceptibility genes.
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-03-26 DOI: 10.1111/jipb.13901
Hui Tao, Ning Xiao, Ruyi Wang, Feng He, Yue Cai, Su Jiang, Min Wang, Dan Wang, Huamin Chen, Xiaoman You, Aihong Li, Guo-Liang Wang, Yuese Ning
{"title":"Development of elite rice with broad-spectrum resistance through pyramiding of key resistance gene and simultaneously editing multiple susceptibility genes.","authors":"Hui Tao, Ning Xiao, Ruyi Wang, Feng He, Yue Cai, Su Jiang, Min Wang, Dan Wang, Huamin Chen, Xiaoman You, Aihong Li, Guo-Liang Wang, Yuese Ning","doi":"10.1111/jipb.13901","DOIUrl":"https://doi.org/10.1111/jipb.13901","url":null,"abstract":"<p><p>Knocking out three susceptibility genes (Pi21, Bsr-d1, and Xa5) in a rice breeding line that contains the resistance Piz-t produced enhanced broad-spectrum resistance against the fungal pathogen Magnaporthe oryzae and the bacterial pathogen Xanthomonas oryzae pv. oryzae without obvious growth penalty.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stacking potato NLR genes activates a calcium-dependent protein kinase and confers broad-spectrum disease resistance to late blight.
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-03-24 DOI: 10.1111/jipb.13892
Xiaoqiang Zhao, Fan Zhang, Xiaoqing Chen, Chongyuan Zhang, Haoyi Zhang, Tian Wang, Jinzhe Zhang, Cheng He, Shuo Wang, Xinjie Zhang, Xi Meng, Vladimir Nekrasov, Liang Kong, Suomeng Dong
{"title":"Stacking potato NLR genes activates a calcium-dependent protein kinase and confers broad-spectrum disease resistance to late blight.","authors":"Xiaoqiang Zhao, Fan Zhang, Xiaoqing Chen, Chongyuan Zhang, Haoyi Zhang, Tian Wang, Jinzhe Zhang, Cheng He, Shuo Wang, Xinjie Zhang, Xi Meng, Vladimir Nekrasov, Liang Kong, Suomeng Dong","doi":"10.1111/jipb.13892","DOIUrl":"https://doi.org/10.1111/jipb.13892","url":null,"abstract":"<p><p>Late blight, caused by the oomycete plant pathogen Phytophthora infestans, is a destructive disease that leads to significant yield loss in potatoes and tomatoes. The introgression of disease resistance (R) genes, which encode nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs), into cultivated potatoes, is highly effective in controlling late blight. Here, we generated transgenic 2R and 3R potato lines by stacking R genes Rpi-blb2/Rpi-vnt1.1 and Rpi-vnt1.1/RB/R8, respectively, in the susceptible cv. Desiree background. The resulting 2R and 3R transgenic potato plants showed resistance to highly virulent P. infestans field isolates. We hypothesized that stacking R genes either resulted in up-regulation of a broader range of immune-related genes, or, more importantly, increase in the fold change of gene expression. To test our hypotheses, we performed transcriptome analysis and identified a subset of core immune-related genes that are induced in response to P. infestans in transgenic lines carrying single R genes versus lines carrying stacks of multiple R genes. In our analysis, stacking R genes resulted not only in the induction of a broader range of defense-associated genes but also a global increase in gene expression fold change, caused by the pathogen. We further demonstrated that the calcium-dependent protein kinase 16 (StCDPK16) gene significantly contributed to resistance to a virulent P. infestans strain, in the R gene background, in a kinase activity-dependent manner. Thus, our data suggest that stacking the R genes enhances late blight resistance through modulating the expression of a broader range of defense-related genes and highlights CDPK16 as a novel player in potato R gene-mediated resistance.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143690746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OsPRMT5 methylates OsPAL1 to promote rice resistance, hindered by a Xanthomonas oryzae effector.
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-03-24 DOI: 10.1111/jipb.13885
Cong Sheng, Kaihuai Li, Bo Wang, Wenchan Chen, Baodian Guo, Lulu Qiao, Hongwei Zhao, Yancun Zhao, Fengquan Liu
{"title":"OsPRMT5 methylates OsPAL1 to promote rice resistance, hindered by a Xanthomonas oryzae effector.","authors":"Cong Sheng, Kaihuai Li, Bo Wang, Wenchan Chen, Baodian Guo, Lulu Qiao, Hongwei Zhao, Yancun Zhao, Fengquan Liu","doi":"10.1111/jipb.13885","DOIUrl":"https://doi.org/10.1111/jipb.13885","url":null,"abstract":"<p><p>Rice bacterial blight, caused by the pathogen Xanthomonas oryzae pv. oryzae (Xoo), poses a significant threat to rice crops. Arginine methylation, a post-translational modification of proteins, plays a pivotal role in transcriptional regulation, RNA processing, and the biosynthesis of plant hormones. Previous research has established that protein arginine methyltransferases (PRMTs) significantly influence protein function through arginine methylation. Nonetheless, the specific role of PRMT5 in regulating salicylic acid (SA) biosynthesis and plant immunity has been relatively unexplored. In this study, we elucidate the role of a rice protein arginine methyltransferase, OsPRMT5, in enhancing rice resistance to Xoo infection by interacting with the SA biosynthesis enzyme phenylalanine ammonia lyase 1 in rice (OsPAL1). Our results indicate that OsPRMT5 methylates OsPAL1 at the arginine residue 75, which affects the interaction between OsPRMT5 and OsPAL1 and subsequently boosts phenylalanine ammonia lyase (PAL) enzyme activity, leading to heightened SA accumulation. Conversely, compared to OsPAL1 overexpression plants in wild-type TP309 background, OsPAL1 overexpression plants in osprmt5 knockout (KO) mutants background exhibited diminished PAL activity. Furthermore, osprmt5 ospal1 double mutants demonstrated reduced resistance to bacterial blight compared to the OsPAL1-KO group. Additionally, we discovered that the Xoo effector protein PXO_01039 undermines the interaction between OsPRMT5 and OsPAL1, thereby facilitating Xoo infection. PXO_01039 binds to OsPRMT5, preventing the formation of the OsPRMT5-OsPAL1 complex, which results in decreased PAL activity and lower SA accumulation. In conclusion, our findings unveil how OsPRMT5 modulates the methylation and enzymatic activity of OsPAL1, a crucial enzyme in SA biosynthesis, to bolster plant antibacterial defenses.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143690745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional genomics dissection of the nodulation autoregulation pathway (AON) in soybean (Glycine max)
IF 9.3 1区 生物学
Journal of Integrative Plant Biology Pub Date : 2025-03-24 DOI: 10.1111/jipb.13898
Peter M. Gresshoff, Chao Su, Huanan Su, April Hastwell, Yanyan Cha, Mengbai Zhang, Estelle B. Grundy, Xitong Chu, Brett J. Ferguson, Xia Li
{"title":"Functional genomics dissection of the nodulation autoregulation pathway (AON) in soybean (Glycine max)","authors":"Peter M. Gresshoff,&nbsp;Chao Su,&nbsp;Huanan Su,&nbsp;April Hastwell,&nbsp;Yanyan Cha,&nbsp;Mengbai Zhang,&nbsp;Estelle B. Grundy,&nbsp;Xitong Chu,&nbsp;Brett J. Ferguson,&nbsp;Xia Li","doi":"10.1111/jipb.13898","DOIUrl":"10.1111/jipb.13898","url":null,"abstract":"<div>\u0000 \u0000 <p>The combination of mutation-based genetics and functional genomics has allowed a detailed dissection of the nodulation-induction and autoregulation of nodulation (AON) pathways of soybean. Applicable to all legumes, nodulation is induced by <i>Rhizobium</i>/<i>Bradyrhizobium-</i>produced lipopolysaccharides (Nod factors), perceived by Nod factor receptors (NFR1/NFR5 dimers), leading to cortical and pericycle cell divisions. These induce the production of CLAVATA3-like (CLE) peptides, which travel in the xylem to the shoot, where they are perceived by a receptor complex including a leucine-rich repeat (LRR) receptor kinase, encoded by <i>GmNARK</i>, <i>LjHAR1</i>, <i>MtSUNN</i> and closely related receptors in other legumes like <i>Phaseolus vulgaris</i> (common bean), <i>Pisum sativum</i> (pea), and <i>Glycine soja</i>. The activated receptor complex negatively regulates by phosphorylation of the constitutive synthesis of miR2111 in the shoot. This is normally is translocated via the phloem to the entire plant body, initiating suppression of a root-expressed Kelch repeat-containing F-box protein “Too Much Love (TML),” which in turn suppresses the nodule initiation cascade. Nodulation is therefore permitted during a developmental window between the induction and progress of the nodulation/cell division/infection cascade during the first few days after inoculation and the functional “readiness” of the AON cascade, delayed by the root–shoot–root loop. Loss-of-function mutations in <i>GmNARK</i> and <i>LjTML</i> result in excessive nodulation (supernodulation/hypernodulation/supernummary nodulation) as well as localized tolerance to externally applied nitrate. Recent analyses have indicated an interaction of the AON with lateral root formation as well as with the autoregulation of mycorrhization (AOM). Further details of the parallel functions of key points in this regulatory loop remain to be elucidated.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"67 3","pages":"762-772"},"PeriodicalIF":9.3,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143690744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信