Xuewei Wang, Ming Gao, Hongxin Li, Congyang Jia, Yiran Wang, Xianting Lei, Peng Yang, Na Zhang, Yang-Dong Guo
{"title":"SCF<sup>SlRAE1</sup> regulates tomato resistance to Botrytis cinerea by modulating SlWRKY1 stability.","authors":"Xuewei Wang, Ming Gao, Hongxin Li, Congyang Jia, Yiran Wang, Xianting Lei, Peng Yang, Na Zhang, Yang-Dong Guo","doi":"10.1111/jipb.13930","DOIUrl":"https://doi.org/10.1111/jipb.13930","url":null,"abstract":"<p><p>Ubiquitination, a critical post-translational modification, plays a pivotal role in fine tuning the immune responses of plants. The tomato (Solanum lycopersicum) suffers significant yield and quality losses caused by the devastating pathogen Botrytis cinerea. We have discovered the role of SlRAE1, a gene encoding an E3 ubiquitin ligase, as a pivotal negative regulator of resistance to B. cinerea. SlRAE1 interacts with SlSKP1, a component of the SKP1-Cullin1-F-box (SCF) complex, to modulate the protein stability of the transcription factor SlWRKY1 through the 26S proteasome pathway. SlWRKY1 targets and inhibits the transcription of SlJAZ7, a suppressor of jasmonic acid (JA) signaling, thereby activating the JA-induced defense system and affecting tomato susceptibility to B. cinerea. The resistance enhancement observed with knock-out SlRAE1 was reduced when SlWRKY1 was also knocked out, highlighting SlWRKY1's role in SlRAE1's regulation of tomato defense against B. cinerea. Our findings elucidate the defense mechanism in tomato and suggest that targeting SlRAE1, by modulating SlWRKY1 stability, could help to develop resistant tomato varieties. These insights have broader implications for using gene-editing technologies to enhance crop defense against fungi.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144075058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing carbon and nitrogen metabolism in plants: From fundamental principles to practical applications.","authors":"Hui Liu, Xiuhua Gao, Weishu Fan, Xiangdong Fu","doi":"10.1111/jipb.13919","DOIUrl":"https://doi.org/10.1111/jipb.13919","url":null,"abstract":"<p><p>Carbon (C) and nitrogen (N) are fundamental elements essential for plant growth and development, serving as the structural and functional backbone of organic compounds and driving essential biological processes such as photosynthesis, carbohydrate metabolism, and N assimilation. The metabolism and transport of C involve the movement of sugars between shoots and roots through xylem and phloem transport systems, regulated by a sugar-signaling hub. Nitrogen uptake, transport, and metabolism are equally critical, with plants assimilating nitrate and ammonium through specialized transporters and enzymes in response to varying N levels to optimize growth and development. The coordination of C and N metabolism is key to plant productivity and the maintaining of agroecosystem stability. However, inefficient utilization of N fertilizers results in substantial environmental and economic challenges, emphasizing the urgent need to improve N use efficiency (NUE) in crops. Integrating efficient photosynthesis with N uptake offers opportunities for sustainable agricultural practices. This review discusses recent advances in understanding C and N transport, metabolism, and signaling in plants, with a particular emphasis on NUE-related genes in rice, and explores breeding strategies to enhance crop efficiency and agricultural sustainability.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144075054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant synthetic biology-based biofortification, strategies and recent progresses.","authors":"Kai Wang, Zhongchi Liu","doi":"10.1111/jipb.13934","DOIUrl":"https://doi.org/10.1111/jipb.13934","url":null,"abstract":"<p><p>Hidden hunger, caused by chronic micronutrient deficiencies, affects billions of people worldwide and remains a critical public health issue despite progress in food production. Biofortification offers a promising solution by enhancing nutrient levels within plant tissues through traditional breeding or advanced biotechnologies. Recent advancements in plant synthetic biology have significantly improved biofortification strategies, enabling precise and targeted nutrient enrichment. This mini-review outlines five core strategies in synthetic biology-based biofortification: overexpression of endogenous biosynthetic genes, introduction of heterologous biosynthetic pathways, expression of nutrient-specific transporters, optimization of transcriptional regulation, and protein (directed) evolution. Vitamin B<sub>1</sub> biofortification serves as a primary illustrative example due to its historical importance and ongoing relevance. Recent breakthroughs, particularly from Chinese research teams, are also highlighted. Together, these strategies offer transformative potential for addressing global nutritional challenges through precise, sustainable and innovative plant-based approaches.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144075056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Arabidopsis chloroplast protein HHL1 regulates AvrRpt2-triggered immunity via light-dependent reactive oxygen species homeostasis.","authors":"Huiren Cai, Bingke Zhao, Kexin Liang, Peiguo Yuan, Caizhen Zhang, Simiao Yang, Sujuan Duan, Hong-Lei Jin, Peng Wang, Bing Liu, Jun Liu","doi":"10.1111/jipb.13929","DOIUrl":"https://doi.org/10.1111/jipb.13929","url":null,"abstract":"<p><p>Chloroplasts are key organelles for capturing solar energy and establishing plant immunity. During photosynthesis and pathogen defense, highly redox-active reactions take place in chloroplasts and generate large amounts of reactive oxygen species (ROS). However, our knowledge of chloroplast-produced ROS biosynthesis in plant immunity under varying light conditions is limited. Here, we report that the chloroplast-localized protein HYPERSENSITIVE TO HIGH LIGHT 1 (HHL1) functions as a dual regulator of AvrRpt2-triggered immunity in Arabidopsis (Arabidopsis thaliana), by modulating levels of chloroplast-produced ROS to activate appropriate responses to pathogen infection under various light intensities. Under normal light conditions, HHL1 positively regulates AvrRpt2-triggered immunity by promoting AvrRpt2-induced chloroplast-produced ROS accumulation, initiating salicylic acid signaling, and inducing the expression of genes encoding ROS-scavenging enzymes. By contrast, under high light (HL) conditions, HHL1 has an opposite role, functioning as a repressor of these immune responses while HL stress attenuates AvrRpt2-triggered immunity. These findings reveal that HHL1 modulates AvrRpt2-triggered immunity by regulating ROS homeostasis in a light intensity-dependent manner. Collectively, our results offer insight into the role of chloroplasts in the crosstalk between plant immunity and light intensity.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143954766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuanfa Liu, Yilin Pan, Yuchen Fei, Renfang Shen, Ping Lan
{"title":"Hijacking phosphate signaling: A novel strategy of fungal pathogens in plant disease.","authors":"Chuanfa Liu, Yilin Pan, Yuchen Fei, Renfang Shen, Ping Lan","doi":"10.1111/jipb.13931","DOIUrl":"https://doi.org/10.1111/jipb.13931","url":null,"abstract":"<p><p>A recent paper reported that fungi use Nudix effectors to disrupt plant phosphate sensing by breaking down inositol pyrophosphate signals, worsening disease, although the exact mechanism remains unclear. This commentary discusses these groundbreaking results and asks whether these effectors affect shoot-root communication and plant nutrition-immunity crosstalk.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143952174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuchen Yu, Zuoyao Li, Yongfang Yang, Shujia Li, Yezi Lu, Yang Li, Xinyu Zhang, Fan Chen, Cao Xu
{"title":"Harnessing Green Revolution genes to optimize tomato production efficiency for vertical farming.","authors":"Xuchen Yu, Zuoyao Li, Yongfang Yang, Shujia Li, Yezi Lu, Yang Li, Xinyu Zhang, Fan Chen, Cao Xu","doi":"10.1111/jipb.13927","DOIUrl":"https://doi.org/10.1111/jipb.13927","url":null,"abstract":"<p><p>Vertical farming offers significant potential to tackle global challenges like urbanization, food security, and climate change. However, its widespread adoption is hindered by high costs, substantial energy demands, and thus low production efficiency. The limited range of economically viable crops further compounds these challenges. Beyond advancing infrastructure, rapidly developing crop cultivars tailored for vertical farming (VF) are essential to enhancing production efficiency. The gibberellin biosynthesis genes GA20-oxidase fueled the Green Revolution in cereals, while the anti-florigen genes SELF-PRUNING (SP) and SELF-PRUNING 5G (SP5G) revolutionized tomato production. Here, we engineer tomato germplasm optimized for VF by leveraging genome editing to integrate Green Revolution gene homologs and anti-florigen genes. Knocking out the tomato SlGA20ox1 gene, but not SlGA20ox2, results in a promising VF-suitable plant architecture featuring short stems and a compact canopy. When cultivated in a commercial vertical farm with multi-layered, LED-equipped automated hydroponic growth systems, slga20ox1 mutants saved space occupation by 75%, achieving a 38%-69% fruit yield increase with higher planting density, less space occupation, and lower lighting power consumption. Stacking SlGA20ox1 with SP and SP5G genes created a more compact plant architecture with accelerated flowering and synchronized fruit ripening. In commercial vertical farms, the sp sp5g slga20ox1 triple mutant reduced space occupation by 85%, shortened the harvest cycle by 16% and increased effective yield by 180%, significantly enhancing production efficiency. Our study demonstrates the potential of integrating agriculture practice-validated genes to rapidly develop tomato cultivars tailored for VF, providing a proof-of-concept for leveraging genome editing to boost production efficiency in VF.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143955856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Activation and suppression mechanisms of the NRG1 helper NLRs.","authors":"Yu-Ru Wang, Ruize Zhang, Daowen Wang, Yong Wang, Zheng Qing Fu","doi":"10.1111/jipb.13928","DOIUrl":"https://doi.org/10.1111/jipb.13928","url":null,"abstract":"<p><p>This commentary examines two recent papers featuring intriguing discoveries on the molecular processes and structural foundations involved in the activation and suppression of the N-requirement gene 1 (NRG1) helper nucleotide-binding leucine-rich repeat receptor.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143961066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eui-Jung Kim, Ye-Jin Son, Ji-Hyun Kim, Woo-Jong Hong, Su Kyoung Lee, Sun Tae Kim, Wanqi Liang, Sunok Moon, Yu-Jin Kim, Ki-Hong Jung
{"title":"OsPRK1/2/3-mediated reactive oxygen species signaling is required for pollen tube germination in rice.","authors":"Eui-Jung Kim, Ye-Jin Son, Ji-Hyun Kim, Woo-Jong Hong, Su Kyoung Lee, Sun Tae Kim, Wanqi Liang, Sunok Moon, Yu-Jin Kim, Ki-Hong Jung","doi":"10.1111/jipb.13921","DOIUrl":"https://doi.org/10.1111/jipb.13921","url":null,"abstract":"<p><p>Pollen hydration, germination, and tube growth are vital processes for the successful fertilization of flowering plants. These processes involve complex signaling pathways. Reactive oxygen species (ROS) generated in apoplast involves signaling for the cell wall expansion during tube growth, however molecular regulators are less known. We identified pollen-specific receptor-like kinase (OsPRK) family genes from rice (Oryza sativa), which have conserved leucine-rich repeat (LRR) and kinase domains. To understand the function of these genes, we produced single and triple mutations for OsPRK1, OsPRK2, and OsPRK3 using the clustered regularly interspaced palindromic repeats (CRISPR/Cas9) system. Among these mutants, triple knockout (KO) lines (osprk1/2/3) exhibited the male-sterile phenotype with normal vegetative growth and floret formation. Through cytological analysis, we confirmed that the reduced seed fertility was due to defects in pollen hydration and germination with low ROS accumulation. This defect of pollen germination was partially recovered by treatment with exogenous H<sub>2</sub>O<sub>2</sub>. We also confirmed that OsPRKs could interact with the LRR extension protein. Our results suggest that rice PRKs redundantly play a role in ROS signaling for pollen hydration and germination, and fertility can be controlled by exogenous application.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143958632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Image:","authors":"","doi":"10.1111/jipb.13693","DOIUrl":"https://doi.org/10.1111/jipb.13693","url":null,"abstract":"<p>In ancient China, the phoenix symbolized auspiciousness, and acted as a conduit for manifesting blessings, operating similarly to a nanocarrier's targeted delivery system. In the cover, a “nanocarrier”, represented as a phoenix, transports “RNAi” soldiers who use their sharp spears to precisely target and control plant pathogens. Xing et al. (pages 1223–1245) provides a detailed summary of the characteristics of various types of nanocarriers and their capabilities in delivering RNAi to prevent and control plant diseases.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"67 5","pages":"C1"},"PeriodicalIF":9.3,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143919394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue information page","authors":"","doi":"10.1111/jipb.13692","DOIUrl":"https://doi.org/10.1111/jipb.13692","url":null,"abstract":"","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"67 5","pages":"1197-1198"},"PeriodicalIF":9.3,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13692","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143919395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}