{"title":"Multiple roles of NAC transcription factors in plant development and stress responses.","authors":"Haiyan Xiong, Haidong He, Yu Chang, Binbin Miao, Zhiwei Liu, Qianqian Wang, Faming Dong, Lizhong Xiong","doi":"10.1111/jipb.13854","DOIUrl":"https://doi.org/10.1111/jipb.13854","url":null,"abstract":"<p><p>NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses. Here, we provide an in-depth review of the structural characteristics, regulatory mechanisms, and functional roles of NACs in different plant species. One of the key features of NACs is their ability to regulate gene expression through a variety of mechanisms, including binding to DNA sequences in the promoter regions of target genes, interacting with other TFs, and modulating chromatin structure. We discuss these mechanisms in detail, providing insights into the complex regulatory networks that govern the activity of NACs. We explore the diverse functions of these TFs in plant growth and development processes, including embryogenesis, seed development, root and shoot development, floral development and fruit ripening, secondary cell wall formation, and senescence. We also discuss the diverse regulatory roles of NACs in response to various stresses, including drought, flooding, heat, cold, salinity, nutrient deficit, and diseases. Lastly, we emphasize the crosstalk role of NACs between developmental processes and stress responses. This integrated perspective highlights how NACs orchestrate plant growth and resilience. Overall, this review provides a comprehensive overview of the pivotal roles of NACs in plant development and stress responses, emphasizing their potential for engineering stress-resistant crops and enhancing agricultural productivity.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143412605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lulu Xue, Pengyu Qu, Huanhuan Zhao, Han Liu, Bingyan Huang, Xiaobo Wang, Zhongxin Zhang, Xiaodong Dai, Li Qin, Wenzhao Dong, Lei Shi, Xinyou Zhang
{"title":"Creation of fragrant peanut using CRISPR/Cas9.","authors":"Lulu Xue, Pengyu Qu, Huanhuan Zhao, Han Liu, Bingyan Huang, Xiaobo Wang, Zhongxin Zhang, Xiaodong Dai, Li Qin, Wenzhao Dong, Lei Shi, Xinyou Zhang","doi":"10.1111/jipb.13864","DOIUrl":"https://doi.org/10.1111/jipb.13864","url":null,"abstract":"<p><p>Targeted knockout of the betaine aldehyde dehydrogenase genes AhBADH1 and AhBADH2 using CRISPR/Cas9 produced peanut mutant lines with significantly elevated 2-acetyl-1-pyrroline levels and a strong aroma, marking the first creation of fragrant peanut lines.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143412602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaofei Wang, Zihao Jiao, Yonghui Zhang, Qingbiao Shi, Qibin Wang, Fengli Zhou, Di Xu, Guodong Wang, Fanying Kong, Haisen Zhang, Pinghua Li, Haiyang Wang, Gang Li
{"title":"DBB2 regulates plant height and shade avoidance responses in maize.","authors":"Xiaofei Wang, Zihao Jiao, Yonghui Zhang, Qingbiao Shi, Qibin Wang, Fengli Zhou, Di Xu, Guodong Wang, Fanying Kong, Haisen Zhang, Pinghua Li, Haiyang Wang, Gang Li","doi":"10.1111/jipb.13859","DOIUrl":"https://doi.org/10.1111/jipb.13859","url":null,"abstract":"<p><p>Increasing plant density has been recognized as an effective strategy for boosting maize yields over the past few decades. However, dense planting significantly reduces the internal light intensity and the red to far-red (R:FR) light ratio in the canopy, which subsequently triggers shade avoidance responses (SAR) that limit further yield enhancements, particularly under high-density conditions. In this study, we identified double B-box containing protein DBB2, a member of the ZmBBX family that is rapidly induced by shade, as a crucial regulator of plant height and SAR. Disruption of DBB2 resulted in shorter internodes, reduced plant height, decreased cell elongation, and diminished sensitivity to shade in maize, effects that can be largely alleviated by external treatment with gibberellins (GA). Furthermore, we discovered that DBB2 physically interacted with the transcription factor HY5, inhibiting its transcriptional activation of ZmGA2ox4, a gene encoding a GA2 oxidase that can deactivate GA. This interaction positively influences maize plant height through the GA pathway. Additionally, we found that the induction of ZmDBB2 by shade is mediated by the transcription factor PIF4. Interestingly, DBB2 then interacted with PIF4 to enhance the transcriptional activation of cell elongation-related genes, such as ZmEXPA1, thereby establishing a positive feedback loop promoting cell elongation under canopy shade conditions. Our findings highlight the critical role of BBX proteins in modulating plant height and SAR, presenting them as key genetic targets for developing maize varieties suited to high-density planting conditions. This study also provides new insights into the molecular mechanisms underlying SAR and offers potential strategies for the genetic improvement of maize plant architecture and grain yield.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rong Miao, Qibing Lin, Penghui Cao, Chunlei Zhou, Miao Feng, Jie Lan, Sheng Luo, Fulin Zhang, Hongmin Wu, Qixian Hao, Hai Zheng, Tengfei Ma, Yunshuai Huang, Changling Mou, Thanhliem Nguyen, Zhijun Cheng, Xiuping Guo, Shijia Liu, Ling Jiang, Jianmin Wan
{"title":"SMALL AND ROUND GRAIN is involved in the brassinosteroid signaling pathway which regulates grain size in rice.","authors":"Rong Miao, Qibing Lin, Penghui Cao, Chunlei Zhou, Miao Feng, Jie Lan, Sheng Luo, Fulin Zhang, Hongmin Wu, Qixian Hao, Hai Zheng, Tengfei Ma, Yunshuai Huang, Changling Mou, Thanhliem Nguyen, Zhijun Cheng, Xiuping Guo, Shijia Liu, Ling Jiang, Jianmin Wan","doi":"10.1111/jipb.13861","DOIUrl":"https://doi.org/10.1111/jipb.13861","url":null,"abstract":"<p><p>Grain size is a key determinant of 1,000-grain weight, one of three factors determining grain yield. However, the complete regulatory network controlling grain size has not been fully clarified. Here, we identified a rice mutant, named small and round grain (srg) that exhibits semi-dwarf stature and small grain size. Cytological analysis showed that cell length and number of spikelet epidermal cells of the srg mutant are reduced, indicating that SRG controls grain size by promoting cell elongation and increasing cell number. SRG encodes a kinesin belonging to the kinesin-1 subfamily and is extensively expressed in different plant tissues with relatively high expression in young panicles. SRG protein is mainly located in the nucleus and cell membrane. Expression of the SRG gene was induced by brassinolide through the brassinosteroid (BR) responsive factor OsWRKY53 and SRG protein was phosphorylated by BR-activated kinase OsBSK3 to prevent its degradation. In addition, microtubule (MT) morphology was abnormal and disordered in the srg and cr-1 mutants. These findings suggest that BR likely stabilizes orderly assembly and arrangement of MTs by stabilizing SRG proteins, thus promoting grain size. SRG overexpression lines produced more tillers and significantly larger and heavier grains to increase 1,000-grain weight, suggesting that SRG has potential to increase grain yield. Our study indicated that SRG is a new BR responsive factor and BR might regulate grain size by influencing the expression of SRG.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xing-Long Ji, Ling-Ling Zhao, Baoyou Liu, Yong-Bing Yuan, Yuepeng Han, Chun-Xiang You, Jian-Ping An
{"title":"MdZFP7 integrates JA and GA signals via interaction with MdJAZ2 and MdRGL3a in regulating anthocyanin biosynthesis and undergoes degradation by the E3 ubiquitin ligase MdBRG3.","authors":"Xing-Long Ji, Ling-Ling Zhao, Baoyou Liu, Yong-Bing Yuan, Yuepeng Han, Chun-Xiang You, Jian-Ping An","doi":"10.1111/jipb.13862","DOIUrl":"https://doi.org/10.1111/jipb.13862","url":null,"abstract":"<p><p>Jasmonic acid (JA) and gibberellin (GA) coordinate many aspects of plant growth and development, including anthocyanin biosynthesis. However, the crossover points of JA and GA signals and the pathways through which they interact to regulate anthocyanin biosynthesis are poorly understood. Here, we investigated the molecular mechanism by which the zinc finger protein (ZFP) transcription factor Malus domestica ZFP7 (MdZFP7) regulates anthocyanin biosynthesis by integrating JA and GA signals at the transcriptional and post-translational levels. MdZFP7 is a positive regulator of anthocyanin biosynthesis, which fulfills its role by directly activating the expression of MdMYB1 and enhancing the transcriptional activation of MdWRKY6 on the target genes MdDFR and MdUF3GT. MdZFP7 integrates JA and GA signals by interacting with the JA repressor apple JASMONATE ZIM-DOMAIN2 (MdJAZ2) and the GA repressor apple REPRESSOR-of-ga1-3-like 3a (MdRGL3a). MdJAZ2 weakens the transcriptional activation of MdMYB1 by MdZFP7 and disrupts the MdZFP7-MdWRKY6 interaction, thereby reducing the anthocyanin biosynthesis promoted by MdZFP7. MdRGL3a contributes to the stimulation of anthocyanin biosynthesis by MdZFP7 by sequestering MdJAZ2 from the MdJAZ2-MdZFP7 complex. The E3 ubiquitin ligase apple BOI-related E3 ubiquitin-protein ligase 3 (MdBRG3), which is antagonistically regulated by JA and GA, targets the ubiquitination degradation of MdZFP7. The MdBRG3-MdZFP7 module moves the crosstalk of JA and GA signals from the realm of transcriptional regulation and into the protein post-translational modification. In conclusion, this study not only elucidates the node-role of MdZFP7 in the integration of JA and GA signals, but also describes the transcriptional and post-translational regulatory network of anthocyanin biosynthesis with MdZFP7 as the hub.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The teosinte-derived allele COOL1 is a potential target for molecular design of chilling resilience in maize.","authors":"Xiaoyu Guo, Kang Chong","doi":"10.1111/jipb.13865","DOIUrl":"https://doi.org/10.1111/jipb.13865","url":null,"abstract":"<p><p>This commentary on Zeng et al. (2025, Cell) discusses the role of COOL1 in maize cold adaptation, highlighting its significance for high-latitude adaptation and the potential for molecular design breeding to enhance cold tolerance in maize.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Image:","authors":"","doi":"10.1111/jipb.13687","DOIUrl":"https://doi.org/10.1111/jipb.13687","url":null,"abstract":"<p>Citrus have been cultivated more than 4,000 years and have become globally valued as fresh fruit and for making juice. Citrus fruits contain many types of antioxidants, including a diverse array of carotenoids, which contribute to their colors. The cover shows cross-sections of citrus fruits arranged in a spiral pattern and displaying a stunning array of colors, from white and pale yellow to grapefruit pink, blood red, golden yellow, and vibrant orange. These slices, varying in size and hue highlight the richness and diversity of citrus fruits and emphasizing the vibrant palette of citrus carotenoids. Sun et al. (pages 294-310) identified CitZAT4 as a key regulator of carotenoid accumulation, providing valuable strategies for breeding citrus varieties with enhanced quality and nutritional value, thereby boosting the economic benefits of the citrus industry.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"67 2","pages":"C1"},"PeriodicalIF":9.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13687","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue information page","authors":"","doi":"10.1111/jipb.13686","DOIUrl":"https://doi.org/10.1111/jipb.13686","url":null,"abstract":"","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"67 2","pages":"197-198"},"PeriodicalIF":9.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13686","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding brassinosteroid-centric phytohormone interactions for crop improvement.","authors":"Wenchao Yin, Nana Dong, Xicheng Li, Yanzhao Yang, Zefu Lu, Wenbin Zhou, Qian Qian, Chengcai Chu, Hongning Tong","doi":"10.1111/jipb.13849","DOIUrl":"https://doi.org/10.1111/jipb.13849","url":null,"abstract":"<p><p>Brassinosteroids (BRs) play a crucial role in regulating multiple biological processes in plants, particularly those related to crop productivity and stress tolerance. During their functioning, BRs engage in extensive and intricate interactions with other phytohormones, including auxin, cytokinins, gibberellins, abscisic acid, ethylene, jasmonates, salicylic acid, and strigolactones. These interactions facilitate the integration of internal and external signals, ultimately shaping the physiological status of the plant. In this review, we introduce BR metabolism and signaling and discuss their role in modulating agronomic traits that directly contribute to grain yield in rice (Oryza sativa), the model plant for crops. We also summarize recent advances in the crosstalk between BRs and other phytohormones in regulating agronomic traits in crops. Furthermore, we highlight significant research that provides insights into developing high-yielding and stress-resistant crop varieties from the perspective of hormone crosstalk. Understanding the genetic and molecular mechanisms through which BRs and other phytohormones collaboratively control agronomic traits offers new approaches for crop improvement.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandra Mosquera, Mireille Ginésy, Irene Teresa Bocos-Asenjo, Huma Amin, Sergio Diez-Hermano, Julio Javier Diez, Jonatan Niño-Sánchez
{"title":"Spray-induced gene silencing to control plant pathogenic fungi: A step-by-step guide.","authors":"Sandra Mosquera, Mireille Ginésy, Irene Teresa Bocos-Asenjo, Huma Amin, Sergio Diez-Hermano, Julio Javier Diez, Jonatan Niño-Sánchez","doi":"10.1111/jipb.13848","DOIUrl":"https://doi.org/10.1111/jipb.13848","url":null,"abstract":"<p><p>RNA interference (RNAi)-based control technologies are gaining popularity as potential alternatives to synthetic fungicides in the ongoing effort to manage plant pathogenic fungi. Among these methods, spray-induced gene silencing (SIGS) emerges as particularly promising due to its convenience and feasibility for development. This approach is a new technology for plant disease management, in which double-stranded RNAs (dsRNAs) targeting essential or virulence genes are applied to plants or plant products and subsequently absorbed by plant pathogens, triggering a gene silencing effect and the inhibition of the infection process. Spray-induced gene silencing has demonstrated efficacy in laboratory settings against various fungal pathogens. However, as research progressed from the laboratory to the greenhouse and field environments, novel challenges arose, such as ensuring the stability of dsRNAs and their effective delivery to fungal targets. Here, we provide a practical guide to SIGS for the control of plant pathogenic fungi. This guide outlines the essential steps and considerations needed for designing and assessing dsRNA molecules. It also addresses key challenges inherent to SIGS, including delivery and stability of dsRNA molecules, and how nanoencapsulation of dsRNAs can aid in overcoming these obstacles. Additionally, the guide underscores existing knowledge gaps that warrant further research and aims to provide assistance to researchers, especially those new to the field, encouraging the advancement of SIGS for the control of a broad range of fungal pathogens.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}