Guangzheng Sun, Jun Chen, Tang Li, Qinsheng Zhu, Xinrui Li, Xuan Mi, Wenxia Wang, Zhichao Zhang, Keyi Huang, Ruoting Yao, Bo Yang, Wenwu Ye, Kaixuan Duan, Zhenchuan Ma, Ke Yu, Yiming Wang, Suomeng Dong, Yan Wang, Heng Yin, Yuanchao Wang
{"title":"A GmNRF5a-GmCERK1-GmCAK1 module mediates chitin/chitosan-triggered immune response in soybean.","authors":"Guangzheng Sun, Jun Chen, Tang Li, Qinsheng Zhu, Xinrui Li, Xuan Mi, Wenxia Wang, Zhichao Zhang, Keyi Huang, Ruoting Yao, Bo Yang, Wenwu Ye, Kaixuan Duan, Zhenchuan Ma, Ke Yu, Yiming Wang, Suomeng Dong, Yan Wang, Heng Yin, Yuanchao Wang","doi":"10.1111/jipb.70042","DOIUrl":null,"url":null,"abstract":"<p><p>Chitin and its deacetylated derivative chitosan are the major components of fungal cell walls and are recognized by plant pattern-recognition receptors (PRRs) as pathogen-associated molecular patterns that induce innate immunity. Recognition of chitin oligosaccharide (CTOS) in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) requires the membrane-localized lysin-motif (LysM)-domain-containing receptors AtLYK5 and OsCEBiP, respectively. However, the mechanism underlying chitosan oligosaccharide (CSOS)-induced plant immunity remains unclear. In this study, we determined that CTOS and CSOS trigger immune responses and boost disease resistance in soybean (Glycine max) through the LysM-domain-containing protein GmNRF5a and its co-receptor GmCERK1. Surprisingly, both GmNFR5a and GmCERK1 bind directly to CTOS and CSOS, with distinct binding sites. The receptor-like kinase GmCAK1 acts downstream of GmCERK1 and is essential for CTOS/CSOS-mediated immune activation. Overall, these findings uncovered how soybean plants respond to CSOS and initiate immune signaling, demonstrating that soybean exploits shared immune sectors to transduce immune signals triggered by CTOS/CSOS, paving the way for the development of disease-resistant crops with broad-spectrum resistance.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.70042","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chitin and its deacetylated derivative chitosan are the major components of fungal cell walls and are recognized by plant pattern-recognition receptors (PRRs) as pathogen-associated molecular patterns that induce innate immunity. Recognition of chitin oligosaccharide (CTOS) in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) requires the membrane-localized lysin-motif (LysM)-domain-containing receptors AtLYK5 and OsCEBiP, respectively. However, the mechanism underlying chitosan oligosaccharide (CSOS)-induced plant immunity remains unclear. In this study, we determined that CTOS and CSOS trigger immune responses and boost disease resistance in soybean (Glycine max) through the LysM-domain-containing protein GmNRF5a and its co-receptor GmCERK1. Surprisingly, both GmNFR5a and GmCERK1 bind directly to CTOS and CSOS, with distinct binding sites. The receptor-like kinase GmCAK1 acts downstream of GmCERK1 and is essential for CTOS/CSOS-mediated immune activation. Overall, these findings uncovered how soybean plants respond to CSOS and initiate immune signaling, demonstrating that soybean exploits shared immune sectors to transduce immune signals triggered by CTOS/CSOS, paving the way for the development of disease-resistant crops with broad-spectrum resistance.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.