ZmSnRK2.10-mediated phosphorylation of ZmDNL1 attenuates ZmYAB15 activity to enhance drought resilience in maize.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aifang Ma, Yuanpeng Qi, Yuemei Zhang, Yu Wang, Xiaoying Hu, Jingrong Li, He Ma, Zhihui Sun, Shan Jiang, Zhenkai Feng, Junsheng Qi, Shuhua Yang, Zhizhong Gong
{"title":"ZmSnRK2.10-mediated phosphorylation of ZmDNL1 attenuates ZmYAB15 activity to enhance drought resilience in maize.","authors":"Aifang Ma, Yuanpeng Qi, Yuemei Zhang, Yu Wang, Xiaoying Hu, Jingrong Li, He Ma, Zhihui Sun, Shan Jiang, Zhenkai Feng, Junsheng Qi, Shuhua Yang, Zhizhong Gong","doi":"10.1111/jipb.70036","DOIUrl":null,"url":null,"abstract":"<p><p>Drought stress represents a critical challenge to global agriculture, severely compromising plant growth and crop productivity through its disruption of intracellular signaling networks, with particular emphasis on protein kinase-mediated pathways and transcriptional regulation. In this study, we identified and characterized ZmDNL1 as a novel transcriptional regulator that serves as a negative modulator of drought tolerance in maize. Through comprehensive biochemical analyses, we demonstrated that ZmDNL1 physically interacts with ZmYAB15, a known negative regulator of drought tolerance, and potentiates its transcriptional regulatory activity. Most significantly, our investigation revealed that ZmSnRK2.10-mediated phosphorylation of three specific N-terminal residues in ZmDNL1 effectively attenuates ZmYAB15's transcriptional activity while maintaining the structural integrity of the ZmDNL1-ZmYAB15 protein complex, ultimately enhancing drought tolerance. These findings elucidate a previously unrecognized regulatory mechanism in which ZmSnRK2.10 orchestrates drought tolerance through phosphorylation-dependent fine tuning of the ZmDNL1-ZmYAB15 transcriptional regulatory module. Beyond advancing our fundamental understanding of drought response mechanisms in maize, this study provides valuable molecular targets for precision breeding strategies aimed at developing drought-resilient crop varieties.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.70036","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Drought stress represents a critical challenge to global agriculture, severely compromising plant growth and crop productivity through its disruption of intracellular signaling networks, with particular emphasis on protein kinase-mediated pathways and transcriptional regulation. In this study, we identified and characterized ZmDNL1 as a novel transcriptional regulator that serves as a negative modulator of drought tolerance in maize. Through comprehensive biochemical analyses, we demonstrated that ZmDNL1 physically interacts with ZmYAB15, a known negative regulator of drought tolerance, and potentiates its transcriptional regulatory activity. Most significantly, our investigation revealed that ZmSnRK2.10-mediated phosphorylation of three specific N-terminal residues in ZmDNL1 effectively attenuates ZmYAB15's transcriptional activity while maintaining the structural integrity of the ZmDNL1-ZmYAB15 protein complex, ultimately enhancing drought tolerance. These findings elucidate a previously unrecognized regulatory mechanism in which ZmSnRK2.10 orchestrates drought tolerance through phosphorylation-dependent fine tuning of the ZmDNL1-ZmYAB15 transcriptional regulatory module. Beyond advancing our fundamental understanding of drought response mechanisms in maize, this study provides valuable molecular targets for precision breeding strategies aimed at developing drought-resilient crop varieties.

zmsnrk2.10介导的ZmDNL1磷酸化可以减弱ZmYAB15的活性,从而增强玉米的抗旱性。
干旱胁迫是全球农业面临的重大挑战,它通过破坏细胞内信号网络,特别是蛋白激酶介导的途径和转录调控,严重损害植物生长和作物生产力。在这项研究中,我们鉴定并鉴定了ZmDNL1作为玉米抗旱性负调节因子的一种新的转录调节因子。通过全面的生化分析,我们证明了ZmDNL1与已知的抗旱负调控因子ZmYAB15物理相互作用,并增强了其转录调控活性。最重要的是,我们的研究发现,zmsnrk2.10介导的ZmDNL1中三个特定n端残基的磷酸化有效地减弱了ZmYAB15的转录活性,同时保持了ZmDNL1-ZmYAB15蛋白复合物的结构完整性,最终增强了ZmDNL1-ZmYAB15蛋白复合物的耐旱性。这些发现阐明了一个以前未被认识的调控机制,其中ZmSnRK2.10通过磷酸化依赖的ZmDNL1-ZmYAB15转录调控模块微调来协调抗旱性。除了促进我们对玉米干旱响应机制的基本理解外,该研究还为旨在开发抗旱作物品种的精确育种策略提供了有价值的分子靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信