{"title":"Author Correction: Emergence of melt and glass states of halide perovskite semiconductors","authors":"Akash Singh, David B. Mitzi","doi":"10.1038/s41578-025-00775-5","DOIUrl":"10.1038/s41578-025-00775-5","url":null,"abstract":"","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 3","pages":"242-242"},"PeriodicalIF":79.8,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41578-025-00775-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tetsuhiro Harimoto, Wei-Hung Jung, David J. Mooney
{"title":"Delivering living medicines with biomaterials","authors":"Tetsuhiro Harimoto, Wei-Hung Jung, David J. Mooney","doi":"10.1038/s41578-024-00766-y","DOIUrl":"10.1038/s41578-024-00766-y","url":null,"abstract":"The engineering of therapeutic living cells through genetic programming is poised to transform medicine. Diverse living medicines, including mammalian cells, fungi, bacteria and viruses, are under development. However, for these medicines to progress in the clinic, new strategies are needed to successfully deliver them into the body. Unlike conventional small-molecule and protein-based biologics, living medicines present distinct challenges for delivery, including the need to maintain viability, control replication, manage metabolism and mitigate immunogenicity. This Review focuses on delivery strategies for living medicines, identifying key challenges and efforts to overcome them. We survey clinically adopted biomaterial strategies for delivering conventional drugs and explore how these approaches can be tailored for living medicines. Finally, we discuss remaining challenges and future directions towards next-generation living medicine delivery. As the field of engineered therapeutic living cells advances, new strategies to deliver them into the body are needed. This Review identifies current challenges in living medicine delivery and discusses how biomaterial strategies could be leveraged to overcome these clinical barriers.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 3","pages":"191-210"},"PeriodicalIF":79.8,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emergence of melt and glass states of halide perovskite semiconductors","authors":"Akash Singh, David B. Mitzi","doi":"10.1038/s41578-024-00759-x","DOIUrl":"10.1038/s41578-024-00759-x","url":null,"abstract":"Metal halide perovskites have attracted considerable attention among emerging semiconductors because they can be fabricated at a low cost and have outstanding optoelectronic properties, exhibiting record-breaking performance in photovoltaic, light-emitting and sensing devices. Since the first report of halide perovskites in 1892, studies have predominantly focused on their crystalline state, characterized by long-range atomic order. Introducing the possibility of a melt and/or glass state, devoid of substantial periodicity, unlocks new avenues for property tunability, reminiscent of the transformative impact that chalcogenide glasses have provided for commercial applications, including memory and computing. In this Perspective, we highlight the mounting evidence suggesting that melt and/or glass states of halide perovskites and related hybrids hold substantial promise for expanding the property and application spectrum of this materials family. We provide a comprehensive overview of melt and glass-forming perovskites, underscore pivotal concepts behind generating low-melting-temperature and switchable crystalline or glassy states, and emphasize the crucial importance of investigating these states in the context of structure–property tunability and application. Crystalline metal halide perovskites have garnered substantial recent research attention given their outstanding semiconducting character, unprecedented tunability and wide-range application. This Perspective highlights the exciting prospects of extending this focus beyond long-range order — that is, to glassy and melt states.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 3","pages":"211-227"},"PeriodicalIF":79.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Light delivery to pancreatic tumours","authors":"Giulia Pacchioni","doi":"10.1038/s41578-024-00768-w","DOIUrl":"10.1038/s41578-024-00768-w","url":null,"abstract":"An article in Advanced Materials reports the development of an implantable, shape-morphing 3D micro-light-emitting diode device that enables continuous and effective light irradiation of pancreatic tumours.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 2","pages":"83-83"},"PeriodicalIF":79.8,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huanyu Li, Ning Zhang, Lei Wang, Jian-Xin Lu, Renhao Dong, Huabo Duan, Jian Yang
{"title":"The challenge of recycling fast-growing fibre-reinforced polymer waste","authors":"Huanyu Li, Ning Zhang, Lei Wang, Jian-Xin Lu, Renhao Dong, Huabo Duan, Jian Yang","doi":"10.1038/s41578-024-00762-2","DOIUrl":"10.1038/s41578-024-00762-2","url":null,"abstract":"Fibre-reinforced polymers are widely used — and waste is growing fast. Appropriate recycling technologies should be purposefully selected to reintegrate fibre-reinforced polymer waste into sustainable industries, yield high-quality industrial products and promote the broader recycling of fibre-reinforced polymers.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 2","pages":"81-82"},"PeriodicalIF":79.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deformable soft magnetic fibres","authors":"Charlotte Allard","doi":"10.1038/s41578-024-00764-0","DOIUrl":"10.1038/s41578-024-00764-0","url":null,"abstract":"An article in Nature Communications presents a one-step spinning technique to fabricate soft magnetic high-entropy alloy fibres that exhibit enhanced plasticity and low coercivity.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 1","pages":"2-2"},"PeriodicalIF":79.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanbin Liu, Ata Madanchi, Andy S. Anker, Lena Simine, Volker L. Deringer
{"title":"The amorphous state as a frontier in computational materials design","authors":"Yuanbin Liu, Ata Madanchi, Andy S. Anker, Lena Simine, Volker L. Deringer","doi":"10.1038/s41578-024-00754-2","DOIUrl":"10.1038/s41578-024-00754-2","url":null,"abstract":"One of the grand challenges in the physical sciences is to ‘design’ a material before it is ever synthesized. There has been fast progress in predicting new solid-state compounds with the help of quantum-mechanical computations and supervised machine learning, and yet such progress has largely been limited to materials with ordered crystal structures. In this Perspective, we argue that the computational design of entirely non-crystalline, amorphous solids is an emerging and rewarding frontier in materials research. We show how recent advances in computational modelling and artificial intelligence can provide the previously missing links among atomic-scale structure, microscopic properties and macroscopic functionality of amorphous solids. Accordingly, we argue that the combination of physics-based modelling and artificial intelligence is now bringing amorphous functional materials ‘by design’ within reach. We discuss new implications for laboratory synthesis, and we outline our vision for the development of the field in the years ahead. Amorphous materials are increasingly central components of key technologies, but their structures remain challenging to study. This Perspective highlights how recent advances in computational materials modelling and artificial intelligence are now bringing the ‘design’ of amorphous materials within reach.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 3","pages":"228-241"},"PeriodicalIF":79.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temporarily solid, permanently porous","authors":"Eren J. Peterson","doi":"10.1038/s41578-024-00765-z","DOIUrl":"10.1038/s41578-024-00765-z","url":null,"abstract":"An article in Nature Communications demonstrates a modular synthetic method to create metal–organic polyhedra that maintain porosity during phase transformation.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 1","pages":"3-3"},"PeriodicalIF":79.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}