{"title":"Ambient fabrication of perovskites for photovoltaics","authors":"Yu Zou, Wenjin Yu, Bo Qu, Zhijian Chen, Mingyang Wei, Lixin Xiao","doi":"10.1038/s41578-025-00813-2","DOIUrl":"https://doi.org/10.1038/s41578-025-00813-2","url":null,"abstract":"Fabricating high-performance perovskite solar cells under ambient conditions — without strict humidity or atmospheric controls — paves the way for scalable, low-cost photovoltaics. However, achieving such fabrication requires deeper materials insights into how moisture and oxygen influence precursor solution chemistry and guide perovskite film crystallization.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"57 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144145970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multimaterial extrusion 3D printing printheads","authors":"Nathan C. Brown, Daniel C. Ames, Jochen Mueller","doi":"10.1038/s41578-025-00809-y","DOIUrl":"https://doi.org/10.1038/s41578-025-00809-y","url":null,"abstract":"<p>Printheads are the cornerstone of material extrusion 3D printing systems, now capable of processing virtually any material — organic or inorganic. Multimaterial capabilities have further expanded their versatility, enabling coextrusion, mixing and material switching. Advanced multifunctional printhead features allow for nozzle size and shape adjustments, printhead rotation and in situ property modulation. These improvements enable unprecedented design complexity, higher throughput and the fabrication of intricate material compositions across multiple length scales. Applications span from architected metamaterials with tunable properties to functional tissue from living cells and soft robotics with integrated sensing. This Review provides a comprehensive overview of this rapidly evolving field, introducing eight archetypal printhead categories and their hybrids. It explores their role in materials design, ability to overcome processing limitations and impact on emerging applications. Additionally, it identifies open challenges and offers an outlook on the future of multimaterial 3D printing.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"59 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144113965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guoping Li, Mohammed Al-Hashimi, Antonio Facchetti, Tobin J. Marks
{"title":"Decoding the halogenation cost-performance paradox in organic solar cells","authors":"Guoping Li, Mohammed Al-Hashimi, Antonio Facchetti, Tobin J. Marks","doi":"10.1038/s41578-025-00804-3","DOIUrl":"https://doi.org/10.1038/s41578-025-00804-3","url":null,"abstract":"<p>The power conversion efficiencies of organic solar cells have now surpassed 20%, marking a considerable advance in performance. This progress raises an important question: which molecular or macromolecular modifications contribute most effectively to efficiency gains? Among these, halogenation — specifically fluorination and chlorination — has been a key driver of performance improvements, making it a particularly promising avenue for materials exploration. In this Perspective, we provide a comparative discussion of a broad range of non-halogenated and halogenated building blocks, acceptors and donors, evaluating the impact of halogenation on efficiency and scalability. We also examine critical challenges, including organic solar cell durability, large-scale manufacturability and the realistic costs associated with halogenation, positioning it as a central factor in performance optimization.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"15 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144104517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inorganic solid-state electrolyte membranes for lithium extraction","authors":"Ze-Xian Low, Qianxi Zhang, Qiuyue Wang, Zhouyou Wang, Zhaoxiang Zhong, Weihong Xing, Huanting Wang","doi":"10.1038/s41578-025-00808-z","DOIUrl":"https://doi.org/10.1038/s41578-025-00808-z","url":null,"abstract":"With the shift towards renewable energy, demand for lithium is surging — underscoring the need for more efficient and sustainable ways to harvest it. Inorganic solid-state electrolytes, most known for their role in all-solid-state batteries, offer largely untapped potential as ion separation membrane materials for direct lithium extraction.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"15 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144065993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisco Freire-Fernández, Sang-Min Park, Max J. H. Tan, Teri W. Odom
{"title":"Plasmonic lattice lasers","authors":"Francisco Freire-Fernández, Sang-Min Park, Max J. H. Tan, Teri W. Odom","doi":"10.1038/s41578-025-00803-4","DOIUrl":"https://doi.org/10.1038/s41578-025-00803-4","url":null,"abstract":"<p>Plasmonic lattice lasers offer a promising alternative to compact sources such as vertical-cavity surface-emitting lasers. These lasers have an open-cavity design consisting of periodic lattices of metallic nanoparticles that facilitate integration with both liquid-state and solid-state gain nanomaterials. Recent advances have enabled real-time control over lasing wavelength, tunable multimodal lasing, and design of complex polarization and intensity profiles. In this Review, we summarize key developments in plasmonic lattice lasers over the past 5 years, with a focus on unconventional lattice cavities and how they can facilitate tailored lasing characteristics. We discuss strategies for realizing multicolour and multidirectional emission, the advantages of different gain materials and the challenges of reducing lasing thresholds. Although substantial progress has been made, open questions regarding fabrication precision, threshold engineering and the realization of electrically driven plasmonic lasers remain. Plasmonic lattice lasers are poised to play a critical part in next-generation technologies for optical communication, sensing and quantum applications.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"117 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143940346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reducing immune response in semiconducting polymers through molecular design","authors":"Charlotte Allard","doi":"10.1038/s41578-025-00812-3","DOIUrl":"https://doi.org/10.1038/s41578-025-00812-3","url":null,"abstract":"An article in Nature Materials reports on a method to reduce the foreign body response of semiconducting polymers.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"7 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143940345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edward B. Gordon, Inyoung Choi, Armaghan Amanipour, Yiwen Hu, Amin Nikkhah, Begum Koysuren, Champ Jones, Nitin Nitin, Reza Ovissipour, Markus J. Buehler, Nicole Tichenor Blackstone, David L. Kaplan
{"title":"Biomaterials in cellular agriculture and plant-based foods for the future","authors":"Edward B. Gordon, Inyoung Choi, Armaghan Amanipour, Yiwen Hu, Amin Nikkhah, Begum Koysuren, Champ Jones, Nitin Nitin, Reza Ovissipour, Markus J. Buehler, Nicole Tichenor Blackstone, David L. Kaplan","doi":"10.1038/s41578-025-00800-7","DOIUrl":"https://doi.org/10.1038/s41578-025-00800-7","url":null,"abstract":"<p>Alternative food products are needed to address the most pressing challenges faced by the food industry: growing global food demand, health concerns, animal welfare, food security and environmental sustainability. Future foods are defined as foods with scalability and sustainability potential owing to rapidly advancing technological developments in their production systems. Key areas of study for future foods include cellular agriculture and plant-based systems, which include biomaterials as key ingredients or as structural components to impart texture, support cell growth and metabolism, and provide nutrients and organoleptic factors to food products. This Review discusses current requirements, options and processing approaches for biomaterials with utility in future foods. We focus on two main approaches: cellular agriculture wherein the cells are the key component for food (with the biomaterials utilized to support the cells via adherence and/or for texture) and plant-based foods wherein acellular plant-derived biomaterials are the food components. In both cases, the same fundamental challenges apply for the biomaterials: achieving utility at scale and low cost while meeting food safety requirements. Other considerations for biomaterials for future foods are also addressed, including sustainability, modelling, consumer acceptance, nutrition, regulatory status and safety considerations to highlight the path ahead. This emerging field of biomaterials for future foods offers a new generation of biomaterial systems that can positively impact human health, environmental sustainability and animal welfare. Although scaling these biomaterial sources cost-effectively presents a major challenge, substantial progress is being made, and opportunities to establish supply chains are already underway.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"11 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143915456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Materials and device strategies to enhance spatiotemporal resolution in bioelectronics","authors":"Jing Zhang, Zhe Cheng, Pengju Li, Bozhi Tian","doi":"10.1038/s41578-025-00798-y","DOIUrl":"https://doi.org/10.1038/s41578-025-00798-y","url":null,"abstract":"<p>Spatiotemporal resolution is a cornerstone of bioelectronics, enabling precise observation and control of biological events at the molecular, cellular and tissue levels. In this Review, we analyse recent advancements in spatiotemporal resolution essential for applications such as neuroprosthetics, cardiac monitoring and biosensing, with a focus on devices utilizing electrical, electrochemical and optoelectronic signal transduction. We define the intrinsic and extrinsic parameters of spatial and temporal resolution and highlight high-performance materials and device architectures — including electrodes, transistors and optoelectronic interfaces — that drive these capabilities. Strategies such as device miniaturization, 3D fabrication and multifunctional integration are evaluated for their capacity to improve resolution, particularly within the complex microenvironments of biological tissues. However, challenges persist, including signal interference, device stability and the demand for reliable long-term operation. Overcoming these obstacles requires continuous innovation in materials science, device engineering and computational approaches. Enhanced spatiotemporal resolution holds promise for advancing diagnostic precision, therapeutic responsiveness and our understanding of dynamic biological systems across biomedical disciplines.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"25 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143893736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinay Yadav, Xunchang Fei, Mohit Arora, Tim H. M. van Emmerik, Yao Wang, Alexis Laurent
{"title":"Gaps in quantifying environmental losses of plastics impede effective solutions","authors":"Vinay Yadav, Xunchang Fei, Mohit Arora, Tim H. M. van Emmerik, Yao Wang, Alexis Laurent","doi":"10.1038/s41578-025-00802-5","DOIUrl":"https://doi.org/10.1038/s41578-025-00802-5","url":null,"abstract":"Ongoing plastics losses to marine, freshwater and terrestrial ecosystems continue to exacerbate the global environmental crisis. Variations in data, methods and assumptions across studies have led to inconsistent estimates of plastics losses and their ecological impacts. These estimates must now be improved to develop and deliver effective interventions.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"24 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143889356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shell-reinforced macroporous hydrogels for bone repair","authors":"Charlotte Allard","doi":"10.1038/s41578-025-00806-1","DOIUrl":"https://doi.org/10.1038/s41578-025-00806-1","url":null,"abstract":"An article in Nature Communications presents a hydrogel with a reinforced macroporous structure designed to guide stem cell differentiation.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"19 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143884881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}