Ionic potential for battery materials

IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qidi Wang, Yong-Sheng Hu, Hong Li, Hui-Ming Cheng, Tianshou Zhao, Chenglong Zhao
{"title":"Ionic potential for battery materials","authors":"Qidi Wang, Yong-Sheng Hu, Hong Li, Hui-Ming Cheng, Tianshou Zhao, Chenglong Zhao","doi":"10.1038/s41578-025-00822-1","DOIUrl":null,"url":null,"abstract":"<p>Developing high-performance rechargeable batteries requires a revolutionary advancement in battery materials, guided by a fundamental understanding of their underlying science and mechanisms. However, this task remains a challenge owing to the complex relationship among composition, structure and property in electrode and electrolyte materials. Ionic potential, a concept derived from geochemistry, has been incorporated into battery materials research since 2020 as a methodology for predicting and optimizing their functional properties. Defined as the ratio of charge number of an ion to its ionic radius, ionic potential serves as a measure of the interaction strength within the structure of a material. In this Perspective, we explore the role of ionic potential in guiding the design of advanced materials for rechargeable batteries. Specifically, we discuss how integrating ionic potential into material design frameworks can capture critical structural interactions, thereby enabling improvements in properties such as ionic conductivity, redox activity and phase transition behaviours. Furthermore, we identify the broader relevance of ionic potential in battery systems, highlighting its potential in advancing fundamental understanding and performance capabilities in battery technology.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"20 1","pages":""},"PeriodicalIF":79.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41578-025-00822-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing high-performance rechargeable batteries requires a revolutionary advancement in battery materials, guided by a fundamental understanding of their underlying science and mechanisms. However, this task remains a challenge owing to the complex relationship among composition, structure and property in electrode and electrolyte materials. Ionic potential, a concept derived from geochemistry, has been incorporated into battery materials research since 2020 as a methodology for predicting and optimizing their functional properties. Defined as the ratio of charge number of an ion to its ionic radius, ionic potential serves as a measure of the interaction strength within the structure of a material. In this Perspective, we explore the role of ionic potential in guiding the design of advanced materials for rechargeable batteries. Specifically, we discuss how integrating ionic potential into material design frameworks can capture critical structural interactions, thereby enabling improvements in properties such as ionic conductivity, redox activity and phase transition behaviours. Furthermore, we identify the broader relevance of ionic potential in battery systems, highlighting its potential in advancing fundamental understanding and performance capabilities in battery technology.

Abstract Image

电池材料的离子电位
开发高性能的可充电电池需要在电池材料方面取得革命性的进步,并以对其基础科学和机制的基本理解为指导。然而,由于电极和电解质材料的组成、结构和性能之间的复杂关系,这项任务仍然是一个挑战。离子电位是一个源自地球化学的概念,自2020年以来,它已被纳入电池材料研究,作为预测和优化其功能特性的方法。离子势的定义是离子的电荷数与其离子半径之比,是衡量材料结构内相互作用强度的指标。在本研究中,我们探讨了离子电位在指导可充电电池先进材料设计中的作用。具体来说,我们讨论了如何将离子势集成到材料设计框架中,以捕获关键的结构相互作用,从而改善离子电导率、氧化还原活性和相变行为等性能。此外,我们确定离子电位在电池系统中的广泛相关性,强调其在推进电池技术的基本理解和性能能力方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Materials
Nature Reviews Materials Materials Science-Biomaterials
CiteScore
119.40
自引率
0.40%
发文量
107
期刊介绍: Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments. Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信