大规模光催化水分解的材料和系统

IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Takashi Hisatomi, Taro Yamada, Hiroshi Nishiyama, Tsuyoshi Takata, Kazunari Domen
{"title":"大规模光催化水分解的材料和系统","authors":"Takashi Hisatomi, Taro Yamada, Hiroshi Nishiyama, Tsuyoshi Takata, Kazunari Domen","doi":"10.1038/s41578-025-00823-0","DOIUrl":null,"url":null,"abstract":"<p>Sunlight-driven photocatalytic water splitting has been studied as a means of producing renewable green solar hydrogen on a large scale at low cost. However, the research community has yet to define a common vision for practical solar hydrogen production, which requires not only photocatalyst materials that drive water-splitting reactions with high efficiency under sunlight but also systems and processes that can be scaled up. Herein, we discuss the current status and challenges in the development of materials, systems and processes for solar hydrogen production via photocatalytic water splitting. Despite the remarkable scientific progress in the development of photocatalyst materials and reaction systems over the past decade, many technological challenges remain before this technology can be put to practical use in terms of efficiency improvement, mass production, large-scale application of photocatalysts, cost reduction, process-efficiency improvement for reaction systems, and societal acceptance. It is, therefore, imperative to stimulate and accelerate research and development and large-scale demonstrations of hydrogen production via photocatalytic water splitting through collaborative efforts among industry, government and academia.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"15 1","pages":""},"PeriodicalIF":79.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Materials and systems for large-scale photocatalytic water splitting\",\"authors\":\"Takashi Hisatomi, Taro Yamada, Hiroshi Nishiyama, Tsuyoshi Takata, Kazunari Domen\",\"doi\":\"10.1038/s41578-025-00823-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sunlight-driven photocatalytic water splitting has been studied as a means of producing renewable green solar hydrogen on a large scale at low cost. However, the research community has yet to define a common vision for practical solar hydrogen production, which requires not only photocatalyst materials that drive water-splitting reactions with high efficiency under sunlight but also systems and processes that can be scaled up. Herein, we discuss the current status and challenges in the development of materials, systems and processes for solar hydrogen production via photocatalytic water splitting. Despite the remarkable scientific progress in the development of photocatalyst materials and reaction systems over the past decade, many technological challenges remain before this technology can be put to practical use in terms of efficiency improvement, mass production, large-scale application of photocatalysts, cost reduction, process-efficiency improvement for reaction systems, and societal acceptance. It is, therefore, imperative to stimulate and accelerate research and development and large-scale demonstrations of hydrogen production via photocatalytic water splitting through collaborative efforts among industry, government and academia.</p>\",\"PeriodicalId\":19081,\"journal\":{\"name\":\"Nature Reviews Materials\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":79.8000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41578-025-00823-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41578-025-00823-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阳光驱动的光催化水分解是一种大规模低成本生产可再生绿色太阳能氢的方法。然而,研究界还没有为实际的太阳能制氢确定一个共同的愿景,这不仅需要光催化剂材料,在阳光下驱动高效的水分解反应,还需要可以扩大规模的系统和过程。在此,我们讨论了光催化水分解太阳能制氢的材料、系统和工艺的发展现状和挑战。尽管在过去的十年中,光催化剂材料和反应系统的发展取得了显著的科学进步,但在该技术能够投入实际应用之前,在效率提高,批量生产,光催化剂的大规模应用,降低成本,提高反应系统的工艺效率以及社会接受度方面仍然存在许多技术挑战。因此,必须通过工业界、政府和学术界的合作,刺激和加速光催化水分解制氢的研发和大规模示范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Materials and systems for large-scale photocatalytic water splitting

Materials and systems for large-scale photocatalytic water splitting

Sunlight-driven photocatalytic water splitting has been studied as a means of producing renewable green solar hydrogen on a large scale at low cost. However, the research community has yet to define a common vision for practical solar hydrogen production, which requires not only photocatalyst materials that drive water-splitting reactions with high efficiency under sunlight but also systems and processes that can be scaled up. Herein, we discuss the current status and challenges in the development of materials, systems and processes for solar hydrogen production via photocatalytic water splitting. Despite the remarkable scientific progress in the development of photocatalyst materials and reaction systems over the past decade, many technological challenges remain before this technology can be put to practical use in terms of efficiency improvement, mass production, large-scale application of photocatalysts, cost reduction, process-efficiency improvement for reaction systems, and societal acceptance. It is, therefore, imperative to stimulate and accelerate research and development and large-scale demonstrations of hydrogen production via photocatalytic water splitting through collaborative efforts among industry, government and academia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Materials
Nature Reviews Materials Materials Science-Biomaterials
CiteScore
119.40
自引率
0.40%
发文量
107
期刊介绍: Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments. Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信