Hye Jin Kim, Ja Hoon Koo, Seunghwan Lee, Taeghwan Hyeon, Dae-Hyeong Kim
{"title":"数字医疗中软生物电子学的材料设计和集成策略","authors":"Hye Jin Kim, Ja Hoon Koo, Seunghwan Lee, Taeghwan Hyeon, Dae-Hyeong Kim","doi":"10.1038/s41578-025-00819-w","DOIUrl":null,"url":null,"abstract":"<p>Advancements in bioelectronics are revolutionizing traditional healthcare by shifting the focus from in-hospital disease diagnosis and treatment to at-home continuous preventive care. This transformation integrates real-time health monitoring and point-of-care interventional therapies and enables artificial intelligence-based health management strategies. However, the mechanical mismatch between rigid bioelectronic devices and soft biological tissues presents important challenges, particularly in long-term applications, including poor adhesion, tissue degeneration, high noise level, signal interference and device instability. To address these challenges, soft bioelectronics — leveraging high-performance, tissue-mimicking and mechanically soft materials — has emerged as a disruptive solution. This Review highlights advancements in materials design and system-level integration strategies for soft bioelectronics, driving the development of next-generation digital healthcare technologies. We categorize materials design approaches, introduce fabrication techniques for soft bioelectronics and explore integration methods. Furthermore, we showcase applications of wearable and implantable soft bioelectronics, demonstrating their potential for continuous health monitoring and therapeutic interventions, ultimately enabling closed-loop health management.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"18 1","pages":""},"PeriodicalIF":79.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Materials design and integration strategies for soft bioelectronics in digital healthcare\",\"authors\":\"Hye Jin Kim, Ja Hoon Koo, Seunghwan Lee, Taeghwan Hyeon, Dae-Hyeong Kim\",\"doi\":\"10.1038/s41578-025-00819-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Advancements in bioelectronics are revolutionizing traditional healthcare by shifting the focus from in-hospital disease diagnosis and treatment to at-home continuous preventive care. This transformation integrates real-time health monitoring and point-of-care interventional therapies and enables artificial intelligence-based health management strategies. However, the mechanical mismatch between rigid bioelectronic devices and soft biological tissues presents important challenges, particularly in long-term applications, including poor adhesion, tissue degeneration, high noise level, signal interference and device instability. To address these challenges, soft bioelectronics — leveraging high-performance, tissue-mimicking and mechanically soft materials — has emerged as a disruptive solution. This Review highlights advancements in materials design and system-level integration strategies for soft bioelectronics, driving the development of next-generation digital healthcare technologies. We categorize materials design approaches, introduce fabrication techniques for soft bioelectronics and explore integration methods. Furthermore, we showcase applications of wearable and implantable soft bioelectronics, demonstrating their potential for continuous health monitoring and therapeutic interventions, ultimately enabling closed-loop health management.</p>\",\"PeriodicalId\":19081,\"journal\":{\"name\":\"Nature Reviews Materials\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":79.8000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41578-025-00819-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41578-025-00819-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Materials design and integration strategies for soft bioelectronics in digital healthcare
Advancements in bioelectronics are revolutionizing traditional healthcare by shifting the focus from in-hospital disease diagnosis and treatment to at-home continuous preventive care. This transformation integrates real-time health monitoring and point-of-care interventional therapies and enables artificial intelligence-based health management strategies. However, the mechanical mismatch between rigid bioelectronic devices and soft biological tissues presents important challenges, particularly in long-term applications, including poor adhesion, tissue degeneration, high noise level, signal interference and device instability. To address these challenges, soft bioelectronics — leveraging high-performance, tissue-mimicking and mechanically soft materials — has emerged as a disruptive solution. This Review highlights advancements in materials design and system-level integration strategies for soft bioelectronics, driving the development of next-generation digital healthcare technologies. We categorize materials design approaches, introduce fabrication techniques for soft bioelectronics and explore integration methods. Furthermore, we showcase applications of wearable and implantable soft bioelectronics, demonstrating their potential for continuous health monitoring and therapeutic interventions, ultimately enabling closed-loop health management.
期刊介绍:
Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments.
Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.