{"title":"设计哺乳动物合成代谢的超分子催化系统","authors":"Jingjing Han, Martin Fussenegger","doi":"10.1038/s41578-025-00801-6","DOIUrl":null,"url":null,"abstract":"<p>Synthetic biology aims to use interchangeable and independent components to develop specialized systems within cellular and cell-free environments to reconfigure natural genetic systems and create innovative tools for biomedicine and industry. Supramolecular nanocatalysts, which use various mechanisms to enhance catalytic reactions, are being explored as components of synthetic gene circuits to optimize metabolic pathways. In this Review, we discuss progress in the incorporation of supramolecular nanocatalysts into cellular systems. We focus on their design, the types of interactions that serve to maintain their supramolecular structure and especially their integration into mammalian cells, as exemplified by actual and potential applications for energy production, energy conversion and novel therapeutics. We also discuss the interactions between supramolecular nanocatalysts and cellular components in metabolic processes and the potential of such combined systems to underpin future breakthroughs in biotechnology and medicine.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"26 1","pages":""},"PeriodicalIF":79.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing supramolecular catalytic systems for mammalian synthetic metabolism\",\"authors\":\"Jingjing Han, Martin Fussenegger\",\"doi\":\"10.1038/s41578-025-00801-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synthetic biology aims to use interchangeable and independent components to develop specialized systems within cellular and cell-free environments to reconfigure natural genetic systems and create innovative tools for biomedicine and industry. Supramolecular nanocatalysts, which use various mechanisms to enhance catalytic reactions, are being explored as components of synthetic gene circuits to optimize metabolic pathways. In this Review, we discuss progress in the incorporation of supramolecular nanocatalysts into cellular systems. We focus on their design, the types of interactions that serve to maintain their supramolecular structure and especially their integration into mammalian cells, as exemplified by actual and potential applications for energy production, energy conversion and novel therapeutics. We also discuss the interactions between supramolecular nanocatalysts and cellular components in metabolic processes and the potential of such combined systems to underpin future breakthroughs in biotechnology and medicine.</p>\",\"PeriodicalId\":19081,\"journal\":{\"name\":\"Nature Reviews Materials\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":79.8000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41578-025-00801-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41578-025-00801-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing supramolecular catalytic systems for mammalian synthetic metabolism
Synthetic biology aims to use interchangeable and independent components to develop specialized systems within cellular and cell-free environments to reconfigure natural genetic systems and create innovative tools for biomedicine and industry. Supramolecular nanocatalysts, which use various mechanisms to enhance catalytic reactions, are being explored as components of synthetic gene circuits to optimize metabolic pathways. In this Review, we discuss progress in the incorporation of supramolecular nanocatalysts into cellular systems. We focus on their design, the types of interactions that serve to maintain their supramolecular structure and especially their integration into mammalian cells, as exemplified by actual and potential applications for energy production, energy conversion and novel therapeutics. We also discuss the interactions between supramolecular nanocatalysts and cellular components in metabolic processes and the potential of such combined systems to underpin future breakthroughs in biotechnology and medicine.
期刊介绍:
Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments.
Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.