{"title":"Ionic potential for battery materials","authors":"Qidi Wang, Yong-Sheng Hu, Hong Li, Hui-Ming Cheng, Tianshou Zhao, Chenglong Zhao","doi":"10.1038/s41578-025-00822-1","DOIUrl":"10.1038/s41578-025-00822-1","url":null,"abstract":"Developing high-performance rechargeable batteries requires a revolutionary advancement in battery materials, guided by a fundamental understanding of their underlying science and mechanisms. However, this task remains a challenge owing to the complex relationship among composition, structure and property in electrode and electrolyte materials. Ionic potential, a concept derived from geochemistry, has been incorporated into battery materials research since 2020 as a methodology for predicting and optimizing their functional properties. Defined as the ratio of charge number of an ion to its ionic radius, ionic potential serves as a measure of the interaction strength within the structure of a material. In this Perspective, we explore the role of ionic potential in guiding the design of advanced materials for rechargeable batteries. Specifically, we discuss how integrating ionic potential into material design frameworks can capture critical structural interactions, thereby enabling improvements in properties such as ionic conductivity, redox activity and phase transition behaviours. Furthermore, we identify the broader relevance of ionic potential in battery systems, highlighting its potential in advancing fundamental understanding and performance capabilities in battery technology. Advancing high-performance rechargeable batteries requires a deep understanding of the complex relationships among material composition, structure and property. This Perspective highlights the emerging role of ionic potential, defined as the charge-to-radius ratio of an ion, in guiding the design and optimization of battery materials.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 9","pages":"697-712"},"PeriodicalIF":86.2,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hye Jin Kim, Ja Hoon Koo, Seunghwan Lee, Taeghwan Hyeon, Dae-Hyeong Kim
{"title":"Materials design and integration strategies for soft bioelectronics in digital healthcare","authors":"Hye Jin Kim, Ja Hoon Koo, Seunghwan Lee, Taeghwan Hyeon, Dae-Hyeong Kim","doi":"10.1038/s41578-025-00819-w","DOIUrl":"10.1038/s41578-025-00819-w","url":null,"abstract":"Advancements in bioelectronics are revolutionizing traditional healthcare by shifting the focus from in-hospital disease diagnosis and treatment to at-home continuous preventive care. This transformation integrates real-time health monitoring and point-of-care interventional therapies and enables artificial intelligence-based health management strategies. However, the mechanical mismatch between rigid bioelectronic devices and soft biological tissues presents important challenges, particularly in long-term applications, including poor adhesion, tissue degeneration, high noise level, signal interference and device instability. To address these challenges, soft bioelectronics — leveraging high-performance, tissue-mimicking and mechanically soft materials — has emerged as a disruptive solution. This Review highlights advancements in materials design and system-level integration strategies for soft bioelectronics, driving the development of next-generation digital healthcare technologies. We categorize materials design approaches, introduce fabrication techniques for soft bioelectronics and explore integration methods. Furthermore, we showcase applications of wearable and implantable soft bioelectronics, demonstrating their potential for continuous health monitoring and therapeutic interventions, ultimately enabling closed-loop health management. Rigid wearable and implantable bioelectronic devices present mechanical mismatches with soft biological tissues that limit their applicability. This Review systematically outlines materials and integration strategies for soft bioelectronic devices that overcome this mismatch and have the potential to enable continuous health monitoring, therapeutic interventions and closed-loop healthcare.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 9","pages":"654-673"},"PeriodicalIF":86.2,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144341368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roy van der Meel, Paul A. Wender, Olivia M. Merkel, Irene Lostalé-Seijo, Javier Montenegro, Ali Miserez, Quentin Laurent, Hanadi Sleiman, Paola Luciani
{"title":"Next-generation materials for nucleic acid delivery","authors":"Roy van der Meel, Paul A. Wender, Olivia M. Merkel, Irene Lostalé-Seijo, Javier Montenegro, Ali Miserez, Quentin Laurent, Hanadi Sleiman, Paola Luciani","doi":"10.1038/s41578-025-00814-1","DOIUrl":"10.1038/s41578-025-00814-1","url":null,"abstract":"Efficient and targeted delivery of nucleic acids is critical for realizing the full therapeutic potential of gene editing, vaccines and RNA-based drugs, and emerging delivery platforms offer innovative solutions through their diverse architectures, tunable properties and distinct biological interactions. In this Viewpoint, researchers working across different delivery platforms — including lipid nanoparticles, synthetic polymers, peptide amphiphiles, coacervate microdroplets, DNA nanostructures and extracellular vesicles — discuss the most promising directions and the main challenges in shaping the future of nucleic acid delivery.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 7","pages":"490-499"},"PeriodicalIF":86.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144296065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jesse Kok, Petru P. Albertini, Jari Leemans, Raffaella Buonsanti, Thomas Burdyny
{"title":"Overcoming copper stability challenges in CO2 electrolysis","authors":"Jesse Kok, Petru P. Albertini, Jari Leemans, Raffaella Buonsanti, Thomas Burdyny","doi":"10.1038/s41578-025-00815-0","DOIUrl":"10.1038/s41578-025-00815-0","url":null,"abstract":"Copper and copper-based catalysts can electrochemically convert CO2 into ethylene and higher alcohols, among other products, at room temperature and pressure. This approach may be suitable for the production of high-value compounds. However, such a promising reaction is heavily burdened by the instability of copper during CO2 reduction. To date, non-copper catalysts have also failed to supplant the activity and selectivity of copper, leaving CO2-to-C2 electrolysis in the balance. In this Perspective, we discuss copper catalyst instability from both the atomistic and the microstructure viewpoint. We motivate that increased fundamental understanding, material design and operational approaches, along with increased reporting of failure mechanisms, will contribute to overcoming the barriers to multi-year operation. Our narrative focuses on the copper catalyst reconstruction occurring during CO2 reduction as one of the major causes inducing loss of C2 activity. We conclude with a rational path forward towards longer operations of CO2-to-C2 electrolysis. Copper is the only electrocatalyst that converts carbon dioxide into multi-carbon products with ease, but it remains notoriously unstable. This Perspective explores the current state-of-the-art understanding of copper degradation mechanisms and uses these insights to motivate both atomistic and system-level approaches to overcome stability challenges.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 7","pages":"550-563"},"PeriodicalIF":86.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144296063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tania Patiño Padial, Shuqin Chen, Ana C. Hortelão, Ayusman Sen, Samuel Sánchez
{"title":"Swarming intelligence in self-propelled micromotors and nanomotors","authors":"Tania Patiño Padial, Shuqin Chen, Ana C. Hortelão, Ayusman Sen, Samuel Sánchez","doi":"10.1038/s41578-025-00818-x","DOIUrl":"https://doi.org/10.1038/s41578-025-00818-x","url":null,"abstract":"<p>Living organisms, from single cells to multicellular systems, are capable of moving as a response to local stimuli using swarming intelligence, a trait researchers aim to replicate in artificial systems. Common strategies observed in natural swarms include motility towards specific signals from the environment, communication among individual units, coordination and cooperation to achieve complex tasks. Inspired by these features, the focus in bioinspired motile nanosystems has shifted from studying individual units to exploring and controlling collective behaviours. Various propulsion mechanisms including magnetic, electric or acoustic fields, as well as onboard chemical reactions, have enabled artificial micromotor and nanomotor (MNM) swarms that can move collectively as a response to environmental inputs. The controlled navigation and improved tissue penetration of MNM swarms is promising within the biomedical field, including in the active transport of medical agents. Despite these exciting advances, artificial MNMs still fall short of the complexity and autonomy seen in biological systems. This Perspective explores the collective behaviour of biological swarms and bioinspired artificial self-propelled nanosystems. We discuss how swarming intelligence applied to synthetic active nanosystems enables swarms to perform various tasks. Finally, we discuss challenges, including material limitations, information storage, communication between swarms and prospects for intelligent swarming systems.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"97 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144288497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coralie Jehanno, Marta Ximenis, Louise Breloy, Oğuzhan Akin, Rita Kol, Kevin M. Van Geem, Steven De Meester, Haritz Sardón
{"title":"What decades of plastics waste management have taught us","authors":"Coralie Jehanno, Marta Ximenis, Louise Breloy, Oğuzhan Akin, Rita Kol, Kevin M. Van Geem, Steven De Meester, Haritz Sardón","doi":"10.1038/s41578-025-00820-3","DOIUrl":"https://doi.org/10.1038/s41578-025-00820-3","url":null,"abstract":"Waste management has transformed over the past half a century, from key dumping and landfilling laws in the 1970s to today’s complex policies targeting plastic waste reduction and recycling. Still, global disparities are glaring, and stronger policies, infrastructure and technology are necessary to achieve a truly circular plastics economy.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"218 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144260260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Chen, Le Yu, Luhe Qi, Stephen J. Eichhorn, Akira Isogai, Erlantz Lizundia, J. Y. Zhu, Chaoji Chen
{"title":"Cellulose nanocomposites by supramolecular chemistry engineering","authors":"Lu Chen, Le Yu, Luhe Qi, Stephen J. Eichhorn, Akira Isogai, Erlantz Lizundia, J. Y. Zhu, Chaoji Chen","doi":"10.1038/s41578-025-00810-5","DOIUrl":"https://doi.org/10.1038/s41578-025-00810-5","url":null,"abstract":"<p>Increasing environmental concerns demand the replacement of petroleum with renewable, sustainable resources to produce biodegradable and carbon-neutral products. As a natural, abundant and versatile biopolymer, cellulose has long been used in traditional applications such as paper and textiles and is now emerging in advanced fields including energy storage, healthcare, food, cosmetics, and paints and emulsions. Supramolecular chemistry offers a powerful strategy for engineering cellulose nanocomposites through specific, directional, tunable and reversible non-covalent interactions between nanocellulose and matrix components to achieve certain mechanical, chemical and biological properties. In this Review, we present the multiscale supramolecular engineering of cellulose nanocomposites and their fabrication and processing into materials. We provide a material and structural perspective of how the mechanical, ionic, optical and thermal properties and the environmental degradability of these nanocomposites can be regulated through supramolecular chemistry. Finally, we discuss how these approaches might address circularity and environmental sustainability goals, and we highlight major challenges and future prospects in the field, calling for further attention on supramolecular chemistry engineering to maximize the potential of these materials.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"39 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144229183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ambient fabrication of perovskites for photovoltaics","authors":"Yu Zou, Wenjin Yu, Bo Qu, Zhijian Chen, Mingyang Wei, Lixin Xiao","doi":"10.1038/s41578-025-00813-2","DOIUrl":"10.1038/s41578-025-00813-2","url":null,"abstract":"Fabricating high-performance perovskite solar cells under ambient conditions — without strict humidity or atmospheric controls — paves the way for scalable, low-cost photovoltaics. However, achieving such fabrication requires deeper materials insights into how moisture and oxygen influence precursor solution chemistry and guide perovskite film crystallization.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 6","pages":"400-402"},"PeriodicalIF":86.2,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144145970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multimaterial extrusion 3D printing printheads","authors":"Nathan C. Brown, Daniel C. Ames, Jochen Mueller","doi":"10.1038/s41578-025-00809-y","DOIUrl":"https://doi.org/10.1038/s41578-025-00809-y","url":null,"abstract":"<p>Printheads are the cornerstone of material extrusion 3D printing systems, now capable of processing virtually any material — organic or inorganic. Multimaterial capabilities have further expanded their versatility, enabling coextrusion, mixing and material switching. Advanced multifunctional printhead features allow for nozzle size and shape adjustments, printhead rotation and in situ property modulation. These improvements enable unprecedented design complexity, higher throughput and the fabrication of intricate material compositions across multiple length scales. Applications span from architected metamaterials with tunable properties to functional tissue from living cells and soft robotics with integrated sensing. This Review provides a comprehensive overview of this rapidly evolving field, introducing eight archetypal printhead categories and their hybrids. It explores their role in materials design, ability to overcome processing limitations and impact on emerging applications. Additionally, it identifies open challenges and offers an outlook on the future of multimaterial 3D printing.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"59 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144113965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}