Swarming intelligence in self-propelled micromotors and nanomotors

IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tania Patiño Padial, Shuqin Chen, Ana C. Hortelão, Ayusman Sen, Samuel Sánchez
{"title":"Swarming intelligence in self-propelled micromotors and nanomotors","authors":"Tania Patiño Padial, Shuqin Chen, Ana C. Hortelão, Ayusman Sen, Samuel Sánchez","doi":"10.1038/s41578-025-00818-x","DOIUrl":null,"url":null,"abstract":"<p>Living organisms, from single cells to multicellular systems, are capable of moving as a response to local stimuli using swarming intelligence, a trait researchers aim to replicate in artificial systems. Common strategies observed in natural swarms include motility towards specific signals from the environment, communication among individual units, coordination and cooperation to achieve complex tasks. Inspired by these features, the focus in bioinspired motile nanosystems has shifted from studying individual units to exploring and controlling collective behaviours. Various propulsion mechanisms including magnetic, electric or acoustic fields, as well as onboard chemical reactions, have enabled artificial micromotor and nanomotor (MNM) swarms that can move collectively as a response to environmental inputs. The controlled navigation and improved tissue penetration of MNM swarms is promising within the biomedical field, including in the active transport of medical agents. Despite these exciting advances, artificial MNMs still fall short of the complexity and autonomy seen in biological systems. This Perspective explores the collective behaviour of biological swarms and bioinspired artificial self-propelled nanosystems. We discuss how swarming intelligence applied to synthetic active nanosystems enables swarms to perform various tasks. Finally, we discuss challenges, including material limitations, information storage, communication between swarms and prospects for intelligent swarming systems.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"97 1","pages":""},"PeriodicalIF":79.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41578-025-00818-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Living organisms, from single cells to multicellular systems, are capable of moving as a response to local stimuli using swarming intelligence, a trait researchers aim to replicate in artificial systems. Common strategies observed in natural swarms include motility towards specific signals from the environment, communication among individual units, coordination and cooperation to achieve complex tasks. Inspired by these features, the focus in bioinspired motile nanosystems has shifted from studying individual units to exploring and controlling collective behaviours. Various propulsion mechanisms including magnetic, electric or acoustic fields, as well as onboard chemical reactions, have enabled artificial micromotor and nanomotor (MNM) swarms that can move collectively as a response to environmental inputs. The controlled navigation and improved tissue penetration of MNM swarms is promising within the biomedical field, including in the active transport of medical agents. Despite these exciting advances, artificial MNMs still fall short of the complexity and autonomy seen in biological systems. This Perspective explores the collective behaviour of biological swarms and bioinspired artificial self-propelled nanosystems. We discuss how swarming intelligence applied to synthetic active nanosystems enables swarms to perform various tasks. Finally, we discuss challenges, including material limitations, information storage, communication between swarms and prospects for intelligent swarming systems.

Abstract Image

自推进式微马达和纳米马达中的群体智能
生物,从单细胞到多细胞系统,都能够利用群体智能对局部刺激做出反应而移动,研究人员的目标是在人工系统中复制这一特征。在自然群体中观察到的常见策略包括对来自环境的特定信号的运动,个体单位之间的沟通,协调和合作以完成复杂的任务。受这些特征的启发,生物动力纳米系统的重点已经从研究单个单位转移到探索和控制集体行为。包括磁场、电场或声场在内的各种推进机制,以及机载化学反应,已经使人工微电机和纳米电机(MNM)群体能够作为对环境输入的响应而集体移动。在生物医学领域,包括药物的主动运输中,MNM群的控制导航和改进的组织渗透是很有前途的。尽管取得了这些令人兴奋的进展,但人工纳米材料仍然缺乏生物系统的复杂性和自主性。本展望探讨了生物群体的集体行为和生物启发的人工自推进纳米系统。我们讨论了群体智能如何应用于合成活性纳米系统,使群体能够执行各种任务。最后,我们讨论了挑战,包括材料限制,信息存储,群体之间的通信和智能群体系统的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Materials
Nature Reviews Materials Materials Science-Biomaterials
CiteScore
119.40
自引率
0.40%
发文量
107
期刊介绍: Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments. Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信