Francisco Freire-Fernández, Sang-Min Park, Max J. H. Tan, Teri W. Odom
{"title":"等离子体晶格激光器","authors":"Francisco Freire-Fernández, Sang-Min Park, Max J. H. Tan, Teri W. Odom","doi":"10.1038/s41578-025-00803-4","DOIUrl":null,"url":null,"abstract":"<p>Plasmonic lattice lasers offer a promising alternative to compact sources such as vertical-cavity surface-emitting lasers. These lasers have an open-cavity design consisting of periodic lattices of metallic nanoparticles that facilitate integration with both liquid-state and solid-state gain nanomaterials. Recent advances have enabled real-time control over lasing wavelength, tunable multimodal lasing, and design of complex polarization and intensity profiles. In this Review, we summarize key developments in plasmonic lattice lasers over the past 5 years, with a focus on unconventional lattice cavities and how they can facilitate tailored lasing characteristics. We discuss strategies for realizing multicolour and multidirectional emission, the advantages of different gain materials and the challenges of reducing lasing thresholds. Although substantial progress has been made, open questions regarding fabrication precision, threshold engineering and the realization of electrically driven plasmonic lasers remain. Plasmonic lattice lasers are poised to play a critical part in next-generation technologies for optical communication, sensing and quantum applications.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"117 1","pages":""},"PeriodicalIF":79.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic lattice lasers\",\"authors\":\"Francisco Freire-Fernández, Sang-Min Park, Max J. H. Tan, Teri W. Odom\",\"doi\":\"10.1038/s41578-025-00803-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plasmonic lattice lasers offer a promising alternative to compact sources such as vertical-cavity surface-emitting lasers. These lasers have an open-cavity design consisting of periodic lattices of metallic nanoparticles that facilitate integration with both liquid-state and solid-state gain nanomaterials. Recent advances have enabled real-time control over lasing wavelength, tunable multimodal lasing, and design of complex polarization and intensity profiles. In this Review, we summarize key developments in plasmonic lattice lasers over the past 5 years, with a focus on unconventional lattice cavities and how they can facilitate tailored lasing characteristics. We discuss strategies for realizing multicolour and multidirectional emission, the advantages of different gain materials and the challenges of reducing lasing thresholds. Although substantial progress has been made, open questions regarding fabrication precision, threshold engineering and the realization of electrically driven plasmonic lasers remain. Plasmonic lattice lasers are poised to play a critical part in next-generation technologies for optical communication, sensing and quantum applications.</p>\",\"PeriodicalId\":19081,\"journal\":{\"name\":\"Nature Reviews Materials\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":79.8000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41578-025-00803-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41578-025-00803-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Plasmonic lattice lasers offer a promising alternative to compact sources such as vertical-cavity surface-emitting lasers. These lasers have an open-cavity design consisting of periodic lattices of metallic nanoparticles that facilitate integration with both liquid-state and solid-state gain nanomaterials. Recent advances have enabled real-time control over lasing wavelength, tunable multimodal lasing, and design of complex polarization and intensity profiles. In this Review, we summarize key developments in plasmonic lattice lasers over the past 5 years, with a focus on unconventional lattice cavities and how they can facilitate tailored lasing characteristics. We discuss strategies for realizing multicolour and multidirectional emission, the advantages of different gain materials and the challenges of reducing lasing thresholds. Although substantial progress has been made, open questions regarding fabrication precision, threshold engineering and the realization of electrically driven plasmonic lasers remain. Plasmonic lattice lasers are poised to play a critical part in next-generation technologies for optical communication, sensing and quantum applications.
期刊介绍:
Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments.
Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.