Nature Reviews Materials最新文献

筛选
英文 中文
3D-printable photopolymers get fully recyclable 3d打印的光聚合物可以完全回收利用
IF 86.2 1区 材料科学
Nature Reviews Materials Pub Date : 2025-04-28 DOI: 10.1038/s41578-025-00807-0
Giulia Pacchioni
{"title":"3D-printable photopolymers get fully recyclable","authors":"Giulia Pacchioni","doi":"10.1038/s41578-025-00807-0","DOIUrl":"10.1038/s41578-025-00807-0","url":null,"abstract":"A paper in Science reports the use of a dissociative network design that results in 3D-printable polymers with good mechanical properties that can be fully recycled without loss of functionality.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 5","pages":"332-332"},"PeriodicalIF":86.2,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and sustainability of polypeptide material systems 多肽材料系统的设计和可持续性
IF 83.5 1区 材料科学
Nature Reviews Materials Pub Date : 2025-04-14 DOI: 10.1038/s41578-025-00793-3
Sarah K. Yorke, Zhenze Yang, Elizabeth G. Wiita, Ayaka Kamada, Tuomas P. J. Knowles, Markus J. Buehler
{"title":"Design and sustainability of polypeptide material systems","authors":"Sarah K. Yorke, Zhenze Yang, Elizabeth G. Wiita, Ayaka Kamada, Tuomas P. J. Knowles, Markus J. Buehler","doi":"10.1038/s41578-025-00793-3","DOIUrl":"https://doi.org/10.1038/s41578-025-00793-3","url":null,"abstract":"<p>Some of the highest-performance materials in nature, including spider silk and collagen, are formed through protein self-assembly. These natural materials, which combine function, performance and assembly under mild aqueous conditions, have inspired a generation of technologically useful biomaterials that use natural proteins as the molecular building blocks. The shift from oil-based feedstocks towards renewable materials has accelerated the search for plastic replacements and has stimulated work in the two major classes of abundant natural polymers, proteins and polysaccharides. Whereas polysaccharides are already used in areas from packaging to structural applications, the unique properties of proteins have not yet been fully harnessed for renewable materials. Advances over the past 15 years have highlighted the promise of protein systems for high-performance applications, enabled by a fundamental understanding of polypeptide self-assembly, emerging computational methods such as artificial intelligence, feedstocks, and materials processing. In this Review, we highlight developments in this area and provide a perspective on the potential of this important class of molecules in both fundamental materials science and sustainability.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"6 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143827708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular design for low-cost organic photovoltaic materials 低成本有机光伏材料的分子设计
IF 86.2 1区 材料科学
Nature Reviews Materials Pub Date : 2025-04-04 DOI: 10.1038/s41578-025-00792-4
Ni Yang  , Shaoqing Zhang  , Yong Cui  , Jianqiu Wang  , Shuohan Cheng  , Jianhui Hou
{"title":"Molecular design for low-cost organic photovoltaic materials","authors":"Ni Yang \u0000 ,&nbsp;Shaoqing Zhang \u0000 ,&nbsp;Yong Cui \u0000 ,&nbsp;Jianqiu Wang \u0000 ,&nbsp;Shuohan Cheng \u0000 ,&nbsp;Jianhui Hou","doi":"10.1038/s41578-025-00792-4","DOIUrl":"10.1038/s41578-025-00792-4","url":null,"abstract":"The development of low-cost and high-performance organic photovoltaic (OPV) materials is currently a major focus of research in the OPV field because the material costs of state-of-the-art OPV cells are prohibitive for industrialization. When analysing state-of-the-art OPV materials, including polymer electron donors and small-molecule electron acceptors, the main prerequisites for high photovoltaic performance, including optoelectronic and morphological properties, are quite clear. However, low-cost materials, consisting of simpler building blocks with fewer chemical substitution positions, present challenges in simultaneously obtaining desirable optoelectronic and morphological properties. In this Review, we first summarize key factors in the molecular design of high-performance OPV materials. Subsequently, we discuss research progress and challenges faced in the molecular design of low-cost materials. Finally, we outline key thoughts and insights related to the molecular design of future low-cost OPV materials with a focus on efficiency and stability. The development of low-cost and high-performance organic photovoltaic materials is critical for the industrialization of organic photovoltaic technology. This Review discusses the key structural features of high-performance materials, summarizes advancements in low-cost donors and acceptors and outlines future molecular design strategies.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 6","pages":"404-424"},"PeriodicalIF":86.2,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143775642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wind turbine blade recycling for greener and sustainable wind energy 风力涡轮机叶片回收利用,实现更环保的可持续风能
IF 86.2 1区 材料科学
Nature Reviews Materials Pub Date : 2025-04-04 DOI: 10.1038/s41578-025-00797-z
Baodong Wang, Guoxing Chen, Yang Dong, Heng Guo, Marc Widenmeyer, Zeai Huang, Ying Zhou, Anke Weidenkaff
{"title":"Wind turbine blade recycling for greener and sustainable wind energy","authors":"Baodong Wang,&nbsp;Guoxing Chen,&nbsp;Yang Dong,&nbsp;Heng Guo,&nbsp;Marc Widenmeyer,&nbsp;Zeai Huang,&nbsp;Ying Zhou,&nbsp;Anke Weidenkaff","doi":"10.1038/s41578-025-00797-z","DOIUrl":"10.1038/s41578-025-00797-z","url":null,"abstract":"The rapid expansion of wind farms has led to a growing challenge: the escalating accumulation of decommissioned wind turbine blades in landfills. Addressing this issue through innovative recycling and reuse strategies is pivotal to advancing a circular economy within the wind energy sector.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 5","pages":"330-331"},"PeriodicalIF":86.2,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143775704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New sorbents for removing forever chemicals need standardized reporting 用于去除永久性化学物质的新型吸附剂需要标准化报告
IF 86.2 1区 材料科学
Nature Reviews Materials Pub Date : 2025-03-28 DOI: 10.1038/s41578-025-00795-1
Zicheng Su, Zhuojing Yang, Kehan Liu, Chunrong Yu, Jianhua Guo, Cheng Zhang
{"title":"New sorbents for removing forever chemicals need standardized reporting","authors":"Zicheng Su,&nbsp;Zhuojing Yang,&nbsp;Kehan Liu,&nbsp;Chunrong Yu,&nbsp;Jianhua Guo,&nbsp;Cheng Zhang","doi":"10.1038/s41578-025-00795-1","DOIUrl":"10.1038/s41578-025-00795-1","url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS), or ‘forever chemicals’, are persistent global pollutants that require efficient sorbents for removal. We propose a minimum data standard that should be reported for any new PFAS sorbent, aiming to enhance reproducibility, facilitate quantitative sorbent comparisons and accelerate PFAS removal technologies.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 5","pages":"327-329"},"PeriodicalIF":86.2,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143723988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forcing imines into MOFs 强迫亚胺进入mof
IF 79.8 1区 材料科学
Nature Reviews Materials Pub Date : 2025-03-26 DOI: 10.1038/s41578-025-00799-x
Ariane Vartanian
{"title":"Forcing imines into MOFs","authors":"Ariane Vartanian","doi":"10.1038/s41578-025-00799-x","DOIUrl":"10.1038/s41578-025-00799-x","url":null,"abstract":"An article in the Journal of the American Chemical Society describes a simple mechanochemical route to imine-based metal–organic frameworks, which have long been difficult to synthesize.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 4","pages":"251-251"},"PeriodicalIF":79.8,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143712958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-transparent perovskites promote radicchio growth 半透明钙钛矿促进菊苣生长
IF 79.8 1区 材料科学
Nature Reviews Materials Pub Date : 2025-03-24 DOI: 10.1038/s41578-025-00796-0
Charlotte Allard
{"title":"Semi-transparent perovskites promote radicchio growth","authors":"Charlotte Allard","doi":"10.1038/s41578-025-00796-0","DOIUrl":"10.1038/s41578-025-00796-0","url":null,"abstract":"An article in Nature Communications shows that using semi-transparent perovskite rooftops in greenhouses enhances the growth of radicchio seedlings.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 4","pages":"250-250"},"PeriodicalIF":79.8,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding materials failure mechanisms for the optimization of lithium-ion battery recycling 了解材料失效机制,优化锂离子电池回收
IF 86.2 1区 材料科学
Nature Reviews Materials Pub Date : 2025-03-20 DOI: 10.1038/s41578-025-00783-5
Mengting Zheng, Ya You, Jun Lu
{"title":"Understanding materials failure mechanisms for the optimization of lithium-ion battery recycling","authors":"Mengting Zheng,&nbsp;Ya You,&nbsp;Jun Lu","doi":"10.1038/s41578-025-00783-5","DOIUrl":"10.1038/s41578-025-00783-5","url":null,"abstract":"The pace of electrification is surging, and recycling is key towards a circular battery life&nbsp;cycle. However, as the usage of lithium-ion batteries (LIBs) expands in modern technologies and ever more complex elements are incorporated, complicated degradation behaviours are introduced, posing challenges for recycling. Metallurgy-based material extraction methods are independent of the complexity of materials decay but at the cost of compromised economic and environmental sustainability. Although direct regeneration is expected to reduce the environmental impact of recycling and improve its economic benefits, it cannot properly deal with failure at different scales and parameters. To effectively manage the growing stream of spent LIBs, strategies on multiple fronts are imperative. Recent developments in recycling mechanisms have highlighted the importance of understanding battery failure mechanisms to achieve environmentally friendly and sustainable recycling practices. In this Review, failure mechanisms in state-of-the-art LIBs are discussed from the particle scale to the cell scale, offering insights for navigating recycling efforts. Recent advancements in material extraction and direct regeneration are summarized, and perspectives on the most pressing challenges for recycling, optimization of recycling processes, and recycling strategies for next-generation batteries are offered. Lithium-ion batteries suffer from complicated degradation behaviours, posing challenges for recycling. This Review explores the failure mechanisms in state-of-the-art cathode materials from the particle to the cell scale and discusses how these insights can help to improve material extraction and direct regeneration to optimize recycling processes.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 5","pages":"355-368"},"PeriodicalIF":86.2,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The state of the art in photovoltaic materials and device research 光伏材料和器件研究的最新进展
IF 86.2 1区 材料科学
Nature Reviews Materials Pub Date : 2025-03-20 DOI: 10.1038/s41578-025-00784-4
Thomas Kirchartz, Genghua Yan, Ye Yuan, Brijesh K. Patel, David Cahen, Pabitra K. Nayak
{"title":"The state of the art in photovoltaic materials and device research","authors":"Thomas Kirchartz,&nbsp;Genghua Yan,&nbsp;Ye Yuan,&nbsp;Brijesh K. Patel,&nbsp;David Cahen,&nbsp;Pabitra K. Nayak","doi":"10.1038/s41578-025-00784-4","DOIUrl":"10.1038/s41578-025-00784-4","url":null,"abstract":"Photovoltaic (PV)&nbsp;technology is crucial for the transition to a carbon-neutral and sustainable society. In this Review, we provide a comprehensive overview of PV materials and technologies, including mechanisms that limit PV solar-cell and module efficiencies. First, we introduce the PV effect and efficiency losses within the framework of the Shockley–Queisser model for solar-to-electrical power conversion. However, all PV technologies fall short of these idealizations in various aspects, from incomplete sunlight absorption to the loss of photocurrent and photovoltage caused by the recombination of photogenerated charge carriers in the cells. Approaching the efficiency limits of PV technology requires material innovations and device designs that minimize these losses. Solar-cell research and development presents several solutions to these problems that are intimately related to the properties of the specific PV materials. To increase efficiencies beyond the Shockley–Queisser limit (around 33%) for a single junction, research has focused on producing multi-junction solar cells. Although these cells do provide higher efficiencies, there are differences in performance between individual cells and full modules in single-junction technologies when integrated into multi-junction configurations, highlighting the challenges in moving from laboratory experiments to commercial products. Photovoltaics is an essential technology for achieving a carbon-neutral society. This Review compares the state of the art of photovoltaic materials and technologies, detailing efficiency limitations and the innovations needed to overcome them.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 5","pages":"335-354"},"PeriodicalIF":86.2,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The road ahead in materials and technologies for volumetric 3D printing 体积3D打印材料和技术的未来之路
IF 83.5 1区 材料科学
Nature Reviews Materials Pub Date : 2025-03-18 DOI: 10.1038/s41578-025-00785-3
Paulina Nunez Bernal, Sammy Florczak, Sebastian Inacker, Xiao Kuang, Jorge Madrid-Wolff, Martin Regehly, Stefan Hecht, Yu Shrike Zhang, Christophe Moser, Riccardo Levato
{"title":"The road ahead in materials and technologies for volumetric 3D printing","authors":"Paulina Nunez Bernal, Sammy Florczak, Sebastian Inacker, Xiao Kuang, Jorge Madrid-Wolff, Martin Regehly, Stefan Hecht, Yu Shrike Zhang, Christophe Moser, Riccardo Levato","doi":"10.1038/s41578-025-00785-3","DOIUrl":"https://doi.org/10.1038/s41578-025-00785-3","url":null,"abstract":"<p>Volumetric 3D printing enables the rapid fabrication of centimetre-scale objects, with the fastest techniques requiring only a few seconds. Having emerged during the past 7 years, this new family of technologies is posed to revolutionize additive manufacturing, fabricating objects and functional parts in a layerless fashion directly within a vat of material in response to optical and acoustic fields. Modern volumetric 3D printing methods are overcoming many challenges inherent to conventional layer-by-layer approaches, the standard in research and industry for the past 40 years. This Review focuses on identifying upcoming challenges and research directions in materials chemistry and process engineering to move volumetric 3D printing from its infancy to its broader adoption. Recent advances include the development of techniques based on optical tomography, light and acoustic holography, xolography, multiwavelength and upconversion-mediated printing, as well as the introduction of materials with custom-designed properties. Promising applications in the development of optical and photonic components, rapid prototyping, soft robotics and bioprinting of living cells are discussed along with a vision for the evolution of volumetric manufacturing towards a broadly accessible technology platform.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"20 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信